浏览全部资源
扫码关注微信
1. 湖南科技大学服务计算与软件新技术湖南省重点实验室,湖南 湘潭 411201
2. 湖南科技大学计算机科学与工程学院,湖南 湘潭 411201
[ "刘建勋(1970- ),男,湖南衡阳人,博士,湖南科技大学教授,主要研究方向为工作流管理、服务计算、云计算、语义和知识网格等" ]
[ "丁领航(1994- ),男,湖南湘潭人,湖南科技大学硕士生,主要研究方向为服务计算与云计算" ]
[ "康国胜(1985- ),男,湖南郴州人,博士,湖南科技大学讲师,主要研究方向为服务计算和云计算、以数据为中心的业务流程管理、业务流程配置、数据挖掘和社交网络" ]
[ "曹步清(1979- ),男,湖南湘潭人,博士,湖南科技大学教授,主要研究方向为服务计算、社交网络和软件工程" ]
[ "肖勇(1995- ),男,湖南湘潭人,湖南科技大学博士生,主要研究方向为服务推荐、服务集群和网络表示学习" ]
网络出版日期:2022-06,
纸质出版日期:2022-07-25
移动端阅览
刘建勋, 丁领航, 康国胜, 等. 基于特征深度融合的Web服务QoS联合预测[J]. 通信学报, 2022,43(7):215-226.
Jianxun LIU, Linghang DING, Guosheng KANG, et al. Joint QoS prediction for Web services based on deep fusion of features[J]. Journal on communications, 2022, 43(7): 215-226.
刘建勋, 丁领航, 康国胜, 等. 基于特征深度融合的Web服务QoS联合预测[J]. 通信学报, 2022,43(7):215-226. DOI: 10.11959/j.issn.1000-436x.2022107.
Jianxun LIU, Linghang DING, Guosheng KANG, et al. Joint QoS prediction for Web services based on deep fusion of features[J]. Journal on communications, 2022, 43(7): 215-226. DOI: 10.11959/j.issn.1000-436x.2022107.
为了解决Web服务QoS预测准确度不够的问题,针对QoS中隐藏的环境偏好信息和多类QoS隐藏的共同特征,提出一种基于特征深度融合的Web服务QoS联合预测方法。考虑QoS数据可以建模为用户-服务二部图,采用多组件图卷积神经网络进行特征提取和映射,采用加权融合方法对多类QoS特征进行同维映射。使用注意力因子分解机对映射后的特征向量进行一阶特征、二阶交互特征和高阶交互特征的提取,并结合各部分结果实现QoS联合预测。实验结果表明,所提方法在均方根误差和平均绝对误差方面优于现有QoS预测方法。
In order to solve the problem of insufficient accuracy of Web service QoS prediction
a joint QoS prediction method for Web services based on the deep fusion of features was proposed with considering of the hidden environmental preference information in QoS and the common features of multi-class QoS.First
QoS data was modeled as a user-service bipartite graph and multi-component graph convolution neural network was used for feature extraction and mapping
and the weighted fusion method was used for the same dimensional mapping of multi-class of QoS features.Subsequently
the attention factor decomposition machine was used to extract the first-order features
second-order interactive features
and high-order interactive features of the mapped feature vector.Finally
the results of each part were combined to achieve the joint QoS prediction.The experimental results show that the proposed method is superior to the existing QoS prediction methods in terms of root mean square error (RMSE) and average absolute error (MAE).
方晨 , 张恒巍 , 张铭 , 等 . 基于信任扩展和列表级排序学习的服务推荐方法 [J ] . 通信学报 , 2018 , 39 ( 1 ): 147 - 158 .
FANG C , ZHANG H W , ZHANG M , et al . Trust expansion and listwise learning-to-rank based service recommendation method [J ] . Journal on Communications , 2018 , 39 ( 1 ): 147 - 158 .
赵晨阳 , 王俊岭 . 基于隐含上下文支持向量机的服务推荐方法 [J ] . 通信学报 , 2019 , 40 ( 9 ): 61 - 73 .
ZHAO C Y , WANG J L . Service recommendation method based on context-embedded support vector machine [J ] . Journal on Communications , 2019 , 40 ( 9 ): 61 - 73 .
YIN Y Y , CHEN L , XU Y S , et al . QoS prediction for service recommendation with deep feature learning in edge computing environment [J ] . Mobile Networks and Applications , 2020 , 25 ( 2 ): 391 - 401 .
WANG X , WANG R J , SHI C , et al . Multi-component graph convolutional collaborative filtering [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 4 ): 6267 - 6274 .
DING L , KANG G , LIU J , et al . QoS prediction for Web services via combining multi-component graph convolutional collaborative filtering and deep factorization machine [C ] // IEEE International Conference on Web Services . Piscataway:IEEE Press , 202 : 551 - 559 .
SHAO L S , ZHANG J , WEI Y , et al . Personalized QoS prediction forWeb services via collaborative filtering [C ] // Proceedings of IEEE International Conference on Web Services . Piscataway:IEEE Press , 2007 : 439 - 446 .
CHEN L , FENG Y P , WU J , et al . An enhanced QoS prediction approach for service selection [C ] // Proceedings of 2011 IEEE International Conference on Services Computing . Piscataway:IEEE Press , 2011 : 727 - 728 .
任丽芳 , 王文剑 . 一种移动边缘计算环境中服务QoS的预测方法 [J ] . 小型微型计算机系统 , 2020 , 41 ( 6 ): 1176 - 1181 .
REN L F , WANG W J . Method for QoS prediction in mobile edge computing environment [J ] . Journal of Chinese Computer Systems , 2020 , 41 ( 6 ): 1176 - 1181 .
WANG S G , ZHAO Y L , HUANG L , et al . QoS prediction for service recommendations in mobile edge computing [J ] . Journal of Parallel and Distributed Computing , 2019 , 127 : 134 - 144 .
邓璇 , 吕晟凯 . 基于信誉感知与嵌入式学习的Web服务QoS预测研究 [J ] . 物联网技术 , 2021 , 11 ( 12 ): 99 - 103 .
DENG X , LYU S K . Research on Web service QoS prediction based on reputation perception and embedded learning [J ] . Internet of Things Technologies , 2021 , 11 ( 12 ): 99 - 103 .
SALAKHUTDINOV R , MNIH A , HINTON G . Restricted Boltzmann machines for collaborative filtering [C ] // Proceedings of the 24th International Conference on Machine Learning . New York:ACM Press , 2007 : 791 - 798 .
LUO X , ZHOU M C , WANG Z D , et al . An effective scheme for QoS estimation via alternating direction method-based matrix factorization [J ] . IEEE Transactions on Services Computing , 2019 , 12 ( 4 ): 503 - 518 .
鲁城华 , 寇纪淞 . 基于用户和服务区域信息的个性化 Web 服务质量预测 [J ] . 管理科学 , 2020 , 33 ( 2 ): 63 - 75 .
LU C H , KOU J S . Personalized QoS prediction for Web services based on the region information of users and services [J ] . Journal of Management Science , 2020 , 33 ( 2 ): 63 - 75 .
CHEN L , XIE F F , ZHENG Z B , et al . Predicting quality of service via leveraging location information [J ] . Complexity,2019 , 2019 :4932030.
TANG M D , LIANG W , YANG Y T , et al . A factorization machine-based QoS prediction approach for mobile service selection [J ] . IEEE Access , 2019 , 7 : 32961 - 32970 .
夏会 , 高旻 , 邹淑 . 时空感知下基于结构相似度的Web服务质量预测 [J ] . 重庆大学学报 , 2021 , 44 ( 1 ): 88 - 96 .
XIA H , GAO M , ZOU S . A structure similarity based quality prediction approach for Web service in the spatial-temporal scenario [J ] . Journal of Chongqing University , 2021 , 44 ( 1 ): 88 - 96 .
陈蕾 , 杨庚 , 陈正宇 , 等 . 基于结构化噪声矩阵补全的 Web 服务QoS预测 [J ] . 通信学报 , 2015 , 36 ( 6 ): 53 - 63 .
CHEN L , YANG G , CHEN Z Y , et al . Web services QoS prediction via matrix completion with structural noise [J ] . Journal on Communications , 2015 , 36 ( 6 ): 53 - 63 .
LUO X , WU H , YUAN H Q , et al . Temporal pattern-aware QoS prediction via biased non-negative latent factorization of tensors [J ] . IEEE Transactions on Cybernetics , 2020 , 50 ( 5 ): 1798 - 1809 .
KANG G S , LIU J X , XIAO Y , et al . Neural and attentional factorization machine-based Web API recommendation for mashup development [J ] . IEEE Transactions on Network and Service Management , 2021 , 18 ( 4 ): 4183 - 4196 .
GAO H H , XU Y S , YIN Y Y , et al . Context-aware QoS prediction with neural collaborative filtering for Internet-of-things services [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 5 ): 4532 - 4542 .
王安迪 . 基于QoS的Web服务质量预测方法研究 [D ] . 北京:华北电力大学(北京) , 2020 .
WANG A D . Research on prediction method of web services quality based on QoS [D ] . Beijing:North China Electric Power University , 2020 .
CHEN D , GAO M , LIU A , et al . A recurrent neural network based approach for Web service QoS prediction [C ] // Proceedings of 2019 2nd International Conference on Artificial Intelligence and Big Data(ICAIBD) . Piscataway:IEEE Press , 2019 : 350 - 357 .
ELIF A , CANBERK B . Forecasting quality of service for next- generation data-driven WiFi6 campus networks [J ] . IEEE Transactions on Network and Service Management , 2021 , 18 ( 4 ): 4744 - 4755 .
ZHANG X W , LI L . Attentional neural factorization machines for knowledge tracing [C ] // Knowledge Science,Engineering and Management . Berlin:Springer , 2021 : 319 - 330 .
RENDLE S . Factorization machines with libFM [J ] . ACM Transactions on Intelligent Systems and Technology , 2012 , 3 ( 3 ): 1 - 22 .
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Proceedings of the 31st International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2017 : 6000 - 6010 .
ZHENG Z , MA H , LYU M R , et al . QoS-aware Web service recommendation by collaborative filtering [J ] . IEEE Transactions on services computing , 2011 , 4 ( 2 ): 140 - 52 .
ZHENG Z B , MA H , LYU M R , et al . Collaborative Web service QoS prediction via neighborhood integrated matrix factorization [J ] . IEEE Transactions on Services Computing , 2013 , 6 ( 3 ): 289 - 299 .
WU H , ZHANG Z X , LUO J C , et al . Multiple attributes QoS prediction via deep neural model with contexts [J ] . IEEE Transactions on Services Computing , 2021 , 14 ( 4 ): 1084 - 1096 .
LOUIZOS C , WELLING M , KINGMA D P . Learning sparse neural networks through L 0 regularization [J ] . arXiv Preprint,arXiv:171201312 , 2017 .
0
浏览量
138
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构