浏览全部资源
扫码关注微信
1. 中国科学院信息工程研究所,北京 100093
2. 中国科学院大学网络空间安全学院,北京 100049
3. 西安电子科技大学网络与信息安全学院,陕西 西安 710071
[ "王瀚仪(1994- ),女,吉林省吉林市人,中国科学院信息工程研究所博士生,主要研究方向为隐私计算" ]
[ "李效光(1995- ),男,陕西西安人,西安电子科技大学博士生,主要研究方向为差分隐私" ]
[ "毕文卿(1997- ),女,山东菏泽人,中国科学院信息工程研究所硕士生,主要研究方向为隐私计算" ]
[ "陈亚虹(1995- ),女,福建泉州人,中国科学院信息工程研究所博士生,主要研究方向为隐私计算" ]
[ "李凤华(1966- ),男,湖北浠水人,博士,中国科学院信息工程研究所研究员、博士生导师,主要研究方向为网络与系统安全、信息保护、隐私计算" ]
[ "牛犇(1984- ),男,陕西西安人,博士,中国科学院信息工程研究所副研究员、博士生导师,主要研究方向为隐私计算、网络安全防护" ]
网络出版日期:2022-08,
纸质出版日期:2022-08-25
移动端阅览
王瀚仪, 李效光, 毕文卿, 等. 多级本地化差分隐私算法推荐框架[J]. 通信学报, 2022,43(8):52-64.
Hanyi WANG, Xiaoguang LI, Wenqing BI, et al. Multi-level local differential privacy algorithm recommendation framework[J]. Journal on communications, 2022, 43(8): 52-64.
王瀚仪, 李效光, 毕文卿, 等. 多级本地化差分隐私算法推荐框架[J]. 通信学报, 2022,43(8):52-64. DOI: 10.11959/j.issn.1000-436x.2022106.
Hanyi WANG, Xiaoguang LI, Wenqing BI, et al. Multi-level local differential privacy algorithm recommendation framework[J]. Journal on communications, 2022, 43(8): 52-64. DOI: 10.11959/j.issn.1000-436x.2022106.
本地化差分隐私(LDP)算法通常为不同用户分配相同的保护机制及参数,却忽视了不同用户终端设备资源与隐私需求的差异。为此,提出一种多级 LDP 算法推荐框架。该框架考虑服务商以及用户的需求,通过服务商和用户的多级管理实现多用户差异化隐私保护。将框架应用至频数统计场景形成 LDP 算法推荐方案,改进LDP算法以保证统计结果的可用性,设计协同机制保护用户的隐私偏好。实验结果证明了所提方案的可用性。
Local differential privacy (LDP) algorithm usually assigned the same protection mechanism and parameters to different users.However
it ignored the differences among the device resources and the privacy requirements of different users.For this reason
a multi-level LDP algorithm recommendation framework was proposed.The server and the users’ requirements were considered in the framework
and the multi-users’ differential privacy protections were realized by the server and the users’ multi-level management.The framework was applied to the frequency statistics scenario to form an LDP algorithm recommendation scheme.LDP algorithm was improved to ensure the availability of statistical results
and a collaborative mechanism was designed to protect users’ privacy preferences.The experimental results demonstrate the availability of the proposed scheme.
DWORK C , . Differential privacy [C ] // Proceedings of 2006 International Colloquium on Automata,Languages and Programming (ICALP) . Berlin:Springer , 2006 : 1 - 12 .
DWORK C , MCSHERRY F , NISSIM K , et al . Calibrating noise to sensitivity in private data analysis [C ] // Theory of Cryptography . Berlin:Springer , 2006 : 265 - 284 .
MCSHERRY F , TALWAR K . Mechanism design via differential privacy [C ] // Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science . Piscataway:IEEE Press , 2007 : 94 - 103 .
WANG T , ZHANG X F , FENG J Y , et al . A comprehensive survey on local differential privacy toward data statistics and analysis [J ] . Sensors , 2020 , 20 ( 24 ): 7030 .
KAIROUZ P , OH S , VISWANATH P . Extremal mechanisms for local differential privacy [J ] . Journal of Machine Learning Research , 2016 , 17 ( 17 ): 1 - 51 .
KAIROUZ P , BONAWITZ K , RAMAGE D . Discrete distribution estimation under local privacy [C ] // Proceedings of 2016 International Conference on Machine Learning (ICML) . New York:ACM Press , 2016 : 2436 - 2444 .
WANG T H , BLOCKI J , LI N H , et al . Locally differentially private protocols for frequency estimation [C ] // Proceedings of 2017 USENIX Security Symposium (USENIX Security) . Berkeley:USENIX Association , 2017 : 729 - 745 .
BASSILY R , SMITH A . Local,private,efficient protocols for succinct histograms [C ] // Proceedings of the 47th Annual ACM Symposium on Theory of Computing . New York:ACM Press , 2015 : 127 - 135 .
WANG T H , LI N H , JHA S . Locally differentially private frequent itemset mining [C ] // Proceedings of 2018 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2018 : 127 - 143 .
YE Q Q , HU H B , MENG X F , et al . PrivKV:key-value data collection with local differential privacy [C ] // Proceedings of 2019 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2019 : 317 - 331 .
DUCHI J C , JORDAN M I , WAINWRIGHT M J . Privacy aware learning [J ] . Journal of the ACM , 2014 , 61 ( 6 ): 1 - 57 .
NGUYÊN T T , XIAO X , YANG Y , et al . Collecting and analyzing data from smart device users with local differential privacy [J ] . arXiv Preprint,arXiv:1606.05053 , 2016 .
YILMAZ E , AL-RUBAIE M , CHANG J M . Locally differentially private naive bayes classification [J ] . arXiv Preprint,arXiv:1905.01039 , 2019 .
MAHAWAGA A P C , BERTOK P , KHALIL I , et al . Local differential privacy for deep learning [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 7 ): 5827 - 5842 .
SHIN H , KIM S , SHIN J , et al . Privacy enhanced matrix factorization for recommendation with local differential privacy [J ] . IEEE Transactions on Knowledge and Data Engineering , 2018 , 30 ( 9 ): 1770 - 1782 .
ERLINGSSON Ú , PIHUR V , KOROLOVA A . RAPPOR:randomized aggregatable privacy-preserving ordinal response [C ] // Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2014 : 1054 - 1067 .
WANG N , XIAO X K , YANG Y , et al . Collecting and analyzing multidimensional data with local differential privacy [C ] // Proceedings of 2019 IEEE 35th International Conference on Data Engineering . Piscataway:IEEE Press , 2019 : 638 - 649 .
ZHAO Y , ZHAO J , YANG M , et al . Local differential privacy-based federated learning for Internet of things [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 11 ): 8836 - 8853 .
CHEN R , LI H R , QIN A K , et al . Private spatial data aggregation in the local setting [C ] // Proceedings of 2016 IEEE 32nd International Conference on Data Engineering . Piscataway:IEEE Press , 2016 : 289 - 300 .
NIE Y W , YANG W , HUANG L S , et al . A utility-optimized framework for personalized private histogram estimation [J ] . IEEE Transactions on Knowledge and Data Engineering , 2019 , 31 ( 4 ): 655 - 669 .
XIA C , HUA J Y , TONG W , et al . Distributed k-means clustering guaranteeing local differential privacy [J ] . Computers & Security , 2020 ,90:101699.
SHEN Z X , XIA Z H , YU P P . PLDP:personalized local differential privacy for multidimensional data aggregation [J ] . Security and Communication Networks,2021 , 2021 :6684179.
NALDI M , D’ACQUISTO G , . Differential privacy:an estimation theory-based method for choosing epsilon [J ] . arXiv Preprint,arXiv:1510.00917 , 2015 .
SHAHANI S , ABRAHAM J , VENKATESWARAN R . Selection and verification of privacy parameters for local differentially private data aggregation [C ] // Proceedings of the 5th International Conference on Information System and Data Mining . New York:ACM Press , 2021 : 84 - 89 .
LI F H , LI H , NIU B , et al . Privacy computing:concept,computing framework,and future development trends [J ] . Engineering , 2019 , 5 ( 6 ): 1179 - 1192 .
叶青青 , 孟小峰 , 朱敏杰 , 等 . 本地化差分隐私研究综述 [J ] . 软件学报 , 2018 , 29 ( 7 ): 1981 - 2005 .
YE Q Q , MENG X F , ZHU M J , et al . Survey on local differential privacy [J ] . Journal of Software , 2018 , 29 ( 7 ): 1981 - 2005 .
NIU B , LI Q H , WANG H Y , et al . A framework for personalized location privacy [J ] . IEEE Transactions on Mobile Computing,2021:doi.org/10.1109/TMC.2021.3055865 .
0
浏览量
740
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构