浏览全部资源
扫码关注微信
1. 北京邮电大学网络与交换技术国家重点实验室,北京 100876
2. 中国移动研究院未来研究院,北京 100053
[ "唐盼(1991- ),男,湖南衡阳人,博士,北京邮电大学特聘副研究员,主要研究方向为毫米波、太赫兹和可见光信道测量与建模" ]
[ "作林佳欣(1999- ),女,甘肃兰州人,北京邮电大学硕士生,主要研究方向为太赫兹信道建模。者简介" ]
[ "张建华(1976- ),女,河北迁安人,博士,北京邮电大学教授、博士生导师,主要研究方向为5G和6G传输技术、智能信道建模、毫米波和太赫兹信道建模、信道模拟器等" ]
[ "田磊(1986- ),男,河北宁晋人,博士,北京邮电大学副教授、硕士生导师,主要研究方向为无线宽带信道和 MIMO 信道测量方法、信道参数估计、信道特性建模以及无线信道建模" ]
[ "常钊玮(1998- ),男,河北邯郸人,北京邮电大学博士生,主要研究方向为太赫兹信道测量与建模" ]
[ "夏亮(1982- ),男,山东潍坊人,中国移动研究院高级工程师,主要研究方向为毫米波、太赫兹和可见光通信" ]
[ "王启星(1980- ),男,广东惠州人,博士,中国移动研究院高级工程师,主要研究方向为5G和6G先进技术" ]
网络出版日期:2022-05,
纸质出版日期:2022-05-25
移动端阅览
唐盼, 林佳欣, 张建华, 等. 面向6G的太赫兹信道反射特性研究[J]. 通信学报, 2022,43(5):102-109.
Pan TANG, Jiaxin LIN, Jianhua ZHANG, et al. Research on reflection characteristics of the terahertz channel for 6G[J]. Journal on communications, 2022, 43(5): 102-109.
唐盼, 林佳欣, 张建华, 等. 面向6G的太赫兹信道反射特性研究[J]. 通信学报, 2022,43(5):102-109. DOI: 10.11959/j.issn.1000-436x.2022102.
Pan TANG, Jiaxin LIN, Jianhua ZHANG, et al. Research on reflection characteristics of the terahertz channel for 6G[J]. Journal on communications, 2022, 43(5): 102-109. DOI: 10.11959/j.issn.1000-436x.2022102.
太赫兹信道反射特性对于认知、掌握太赫兹信道传播机理,以及建立面向6G的高精度太赫兹信道模型至关重要。为此,首先,综述了太赫兹信道反射特性在理论建模和实测分析两方面的研究现状。接着,针对5种常见建筑材料,利用基于时域相关原理的太赫兹信道测量平台开展了240~310 GHz频率范围的反射系数测量,并发现了反射系数依赖于电磁波的入射角。然后,参考Rayleigh反射系数理论模型,提出了入射角依赖的反射系数统计性模型,该模型能准确刻画反射系数随角度的变化规律。最后,展望了太赫兹信道反射特性的研究方向。
The reflection characteristics of the terahertz channel are crucial for understanding and mastering the propagation mechanism of the terahertz channel
which are also required for a high-precision terahertz channel model for 6G.Therefore
the research status of terahertz channel reflection characteristics in theoretical modeling and measurement analysis were first summarized.Then
the reflection coefficient measurement campaign in the frequency range of 240 GHz to 310 GHz for five kinds of common building materials was conducted by a time-domain correlation-based terahertz channel measurement platform.It was found that the reflection coefficients were related to the incident angle.Based on the Rayleigh reflection coefficient theoretical model
a statistical reflection coefficient model was further proposed as a function of incident angle.Generally
the proposed model could accurately describe the variation law of the reflection coefficient with angle.Finally
research directions of terahertz channel reflection characteristics were discussed.
中国信息通信研究院 . 6G 总体愿景与潜在关键技术白皮书 [R ] . 2021 .
China Academy of Information and Communications Technology . 6G overall vision and potential key technology white paper [R ] . 2021 .
PIESIEWICZ R , KLEINE-OSTMANN T , KRUMBHOLZ N , et al . Short-range ultra-broadband terahertz communications:concepts and perspectives [J ] . IEEE Antennas and Propagation Magazine , 2007 , 49 ( 6 ): 24 - 39 .
TATARIA H , SHAFI M , MOLISCH A F , et al . 6G wireless systems:vision,requirements,challenges,insights,and opportunities [J ] . Proceedings of the IEEE , 2021 , 109 ( 7 ): 1166 - 1199 .
YI H F , GUAN K , HE D P , et al . Terahertz channel measurement and characterization on a desktop from 75 to 400 GHz [C ] // Proceedings of 2021 IEEE 4th International Conference on Electronic Information and Communication Technology . Piscataway:IEEE Press , 2021 : 756 - 761 .
SIEGEL P H . Terahertz technology [J ] . IEEE Transactions on Microwave Theory and Techniques , 2002 , 50 ( 3 ): 910 - 928 .
RAPPAPORT T S , XING Y C , KANHERE O , et al . Wireless communications and applications above 100 GHz:opportunities and challenges for 6G and beyond [J ] . IEEE Access , 2019 , 7 : 78729 - 78757 .
张建华 , 唐盼 , 姜涛 , 等 . 5G 信道建模研究的进展与展望 [J ] . 中国科学基金 , 2020 , 34 ( 2 ): 163 - 178 .
ZHANG J H , TANG P , JIANG T , et al . Research on channel modeling for 5G:current status and future outlook [J ] . Bulletin of National Natural Science Foundation of China , 2020 , 34 ( 2 ): 163 - 178 .
谢莎 , 李浩然 , 李玲香 , 等 . 太赫兹通信技术综述 [J ] . 通信学报 , 2020 , 41 ( 5 ): 168 - 186 .
XIE S , LI H R , LI L X , et al . Survey of terahertz communication technology [J ] . Journal on Communications , 2020 , 41 ( 5 ): 168 - 186 .
田浩宇 , 唐盼 , 张建华 . 面向 6G 的太赫兹信道特性与建模研究的综述 [J ] . 移动通信 , 2020 , 44 ( 6 ): 29 - 35 , 43 .
TIAN H Y , TANG P , ZHANG J H . A review of terahertz channel characteristics and modeling for 6G [J ] . Mobile Communications , 2020 , 44 ( 6 ): 29 - 35 , 43 .
JANSEN C , PRIEBE S , MOLLER C , et al . Diffuse scattering from rough surfaces in THz communication channels [J ] . IEEE Transactions on Terahertz Science and Technology , 2011 , 1 ( 2 ): 462 - 472 .
PIESIEWICZ R , KLEINE-OSTMANN T , KRUMBHOLZ N , et al . Terahertz characterisation of building materials [J ] . Electronics Letters , 2005 , 41 ( 18 ): 1002 .
KATZIN M . The scattering of electromagnetic waves from rough surfaces [J ] . Proceedings of the IEEE , 1964 , 52 ( 11 ): 1389 - 1390 .
KOKKONIEMI J , PETROV V , MOLTCHANOV D , et al . Wideband terahertz band reflection and diffuse scattering measurements for beyond 5G indoor wireless networks [C ] // Proceedings of 22th European Wireless Conference . Piscataway:IEEE Press , 2016 : 1 - 6 .
PRIEBE S , JACOB M , JANSEN C , et al . Non-specular scattering modeling for THz propagation simulations [C ] // Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP) . Piscataway:IEEE Press , 2011 : 1 - 5 .
PIESIEWICZ R , JANSEN C , MITTLEMAN D , et al . Scattering analysis for the modeling of THz communication systems [J ] . IEEE Transactions on Antennas and Propagation , 2007 , 55 ( 11 ): 3002 - 3009 .
SHEIKH F , ZANTAH Y , BEN M I , et al . Scattering and roughness analysis of indoor materials at frequencies from 750 GHz to 1.1 THz [J ] . IEEE Transactions on Antennas and Propagation , 2021 , 69 ( 11 ): 7820 - 7829 .
LYU Y , KYÖSTI P , FAN W . Sub-terahertz channel sounder:review and future challenges [J ] . China Communications , 2022 , 19 ( 11 ): 1 - 17 .
JANSEN C , PIESIEWICZ R , MITTLEMAN D , et al . The impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systems [J ] . IEEE Transactions on Antennas and Propagation , 2008 , 56 ( 5 ): 1413 - 1419 .
JACOB M , KÜRNER T , GEISE R , et al . Reflection and transmission properties of building materials in D-band for modeling future mm-wave communication systems [C ] // Proceedings of the Fourth European Conference on Antennas and Propagation . Piscataway:IEEE Press , 2010 : 1 - 5 .
SHEIKH F , ZANTAH Y , BATRA A , et al . Far-distance VNA-based measurements of indoor materials at 300 GHz [C ] // Proceedings of 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) . Piscataway:IEEE Press , 2021 :64.
XING Y C , KANHERE O , JU S H , et al . Indoor wireless channel properties at millimeter wave and sub-terahertz frequencies [C ] // Proceedings of 2019 IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
KIM M D , KIM K W , KWON H K , et al . Experimental reflection characteristics of 253 GHz in a small closed-room [C ] // Proceedings of 2020 International Symposium on Antennas and Propagation (ISAP) . Piscataway:IEEE Press , 2021 : 689 - 690 .
TANG P , ZHANG J H , TIAN H Y , et al . Channel measurement and path loss modeling from 220 GHz to 330 GHz for 6G wireless communications [J ] . China Communications , 2021 , 18 ( 5 ): 19 - 32 .
LANDRON O , FEUERSTEIN M J , RAPPAPORT T S . A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment [J ] . IEEE Transactions on Antennas and Propagation , 1996 , 44 ( 3 ): 341 - 351 .
MØLSTER K M . THz time domain spectroscopy of materials in reflection and transmission [D ] . Trondheim:Norges Teknisk-Naturvitensk apelige Universitet , 2017 .
NASHIMA S , MORIKAWA O , TAKATA K , et al . Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy [J ] . Applied Physics Letters , 2001 , 79 ( 24 ): 3923 - 3925 .
0
浏览量
519
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构