浏览全部资源
扫码关注微信
重庆大学微电子与通信工程学院,重庆 400044
[ "廖勇(1982- ),男,四川自贡人,博士,重庆大学副研究员、博士生导师,主要研究方向为下一代无线通信、人工智能、区块链及其在无线通信中的应用等" ]
[ "王世义(1996- ),男,山东淄博人,重庆大学硕士生,主要研究方向为无线通信CSI反馈" ]
网络出版日期:2022-05,
纸质出版日期:2022-05-25
移动端阅览
廖勇, 王世义. 高速移动环境下基于RM-Net的大规模MIMO CSI反馈算法[J]. 通信学报, 2022,43(5):166-176.
Yong LIAO, Shiyi WANG. CSI feedback algorithm based on RM-Net for massive MIMO systems in high-speed mobile environment[J]. Journal on communications, 2022, 43(5): 166-176.
廖勇, 王世义. 高速移动环境下基于RM-Net的大规模MIMO CSI反馈算法[J]. 通信学报, 2022,43(5):166-176. DOI: 10.11959/j.issn.1000-436x.2022097.
Yong LIAO, Shiyi WANG. CSI feedback algorithm based on RM-Net for massive MIMO systems in high-speed mobile environment[J]. Journal on communications, 2022, 43(5): 166-176. DOI: 10.11959/j.issn.1000-436x.2022097.
针对高速移动环境信道特征复杂多变,同时存在加性噪声和非线性效应的影响,提出一种残差混合网络(RM-Net)的大规模MIMO CSI反馈算法。RM-Net通过学习高速移动信道的空间结构与时间相关性,具备去除大规模MIMO信道噪声的能力,能显著提高CSI压缩率与恢复质量。系统仿真结果表明,RM-Net可消除高速移动场景加性噪声的影响,学习并适应稀疏、双选衰落信道特征,在高压缩率与低信噪比条件下依然具有较好的性能表现,所提算法性能大幅优于其他基于压缩感知(CS)和深度学习(DL)的CSI反馈算法。
Aiming at the complex and changeable channel characteristics in high-speed mobile environment
and the influence of additive noise and nonlinear effects
a residual mixing network (RM-Net) for massive MIMO CSI feedback was proposed.By learning the spatial structure and temporal correlation of high-speed mobile channel
the network was able to remove massive MIMO channel noise
and the CSI compression rate and recovery quality could be significantly improved.System simulation results show that RM-Net can eliminate the influence of additive noise in high-speed mobile scenarios
learn and adapt to the channel characteristics of sparse and double-selective fading channels
and still has good performance under the conditions of high compression rate and low signal-to-noise ratio.The proposed algorithm performance is much better than other CS-based and DL-based CSI feedback algorithms.
LI C G , LIU P , ZOU C , et al . Spectral-efficient cellular communications with coexistent one- and two-hop transmissions [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 8 ): 6765 - 6772 .
BOCCARDI F , HEATH R W , LOZANO A , et al . Five disruptive technology directions for 5G [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 74 - 80 .
BARRIAC G , MADHOW U . Space-time communication for OFDM with implicit channel feedback [J ] . IEEE Transactions on Information Theory , 2004 , 50 ( 12 ): 3111 - 3129 .
TSENG C C , WU J Y , LEE T S . Enhanced compressive downlink CSI recovery for FDD massive MIMO systems using weighted block-minimization [J ] . IEEE Transactions on Communications , 2016 , 64 ( 3 ): 1055 - 1067 .
HE K M , ZHANG X Y , REN S Q , et al . Identity mappings in deep residual networks [C ] // Proceedings of the 14th European Conference on Computer Vision . Berlin:Springer , 2016 : 630 - 645 .
SZEGEDY C , IOFFE S , VANHOUCKE V . Inception-v4,inception-ResNet and the impact of the residual connections on learning [C ] // Proceedings of the 31st AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2017 : 4278 - 4284 .
WEN C K , SHIH W T , JIN S . Deep learning for massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 748 - 751 .
LIU Z Y , ZHANG L , DING Z . Exploiting bi-directional channel reciprocity in deep learning for low rate massive MIMO CSI feedback [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 3 ): 889 - 892 .
YAO H T , DAI F , ZHANG S L , et al . DR2-Net:deep residual reconstruction network for image compressive sensing [J ] . Neurocomputing , 2019 , 359 : 483 - 493 .
WANG T Q , WEN C K , JIN S , et al . Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 2 ): 416 - 419 .
GUO J J , WEN C K , JIN S , et al . Convolutional neural network-based multiple-rate compressive sensing for massive MIMO CSI feedback:design,simulation,and analysis [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 4 ): 2827 - 2840 .
SUN Q , WU Y Z , WANG J , et al . CNN-based CSI acquisition for FDD massive MIMO with noisy feedback [J ] . Electronics Letters , 2019 , 55 ( 17 ): 963 - 965 .
JANG Y , KONG G , JUNG M , et al . Deep autoencoder based CSI feedback with feedback errors and feedback delay in FDD massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 3 ): 833 - 836 .
LIU L F , OESTGES C , POUTANEN J , et al . The COST 2100 MIMO channel model [J ] . IEEE Wireless Communications , 2012 , 19 ( 6 ): 92 - 99 .
HUANG G , LIU S C , DER MAATEN L V , et al . CondenseNet:an efficient DenseNet using learned group convolutions [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 2752 - 2761 .
ZHANG T , QI G J , XIAO B , et al . Interleaved group convolutions [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2017 : 4383 - 4392 .
KAISER L , GOMEZ A N , CHOLLET F . Depthwise separable convolutions for neural machine translation [J ] . Computer Science Computation and Language , 2017 , 34 ( 4 ): 145 - 168 .
VEIT A , WILBER M J , BELONGIE S . Residual networks behave like ensembles of relatively shallow networks [C ] // Proceedings of the 2016 Conference on Advances in Neural Information Processing Systems . Barcelona:Neural Information Processing Systems Foundation , 2016 : 550 - 558 .
IOFFE S , SZEGEDY C . Batch normalization accelerating deep network training by reducing internal covariate shift [J ] . Computer Science Machine Learning , 2015 , 15 : 56 - 61 .
KOLOMVAKIS N , MATTHAIOU M , COLDREY M . Massive MIMO in sparse channels [C ] // Proceedings of 2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications . Piscataway:IEEE Press , 2014 : 21 - 25 .
BARANIUK R G . Compressive sensing lecture notes [J ] . IEEE Signal Processing Magazine , 2007 , 24 ( 4 ): 118 - 121 .
KUO P H , KUNG H T , TING P A . Compressive sensing based channel feedback protocols for spatially-correlated massive antenna ar rays [C ] // Proceedings of 2012 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2012 : 492 - 497 .
IQBAL R , ABHAYAPALA T D , LAMAHEWA T A . Generalised Clarke model for mobile-radio reception [J ] . IET Communications , 2009 , 3 ( 4 ): 644 - 654 .
FAN G H , SUN J L , GUI G , et al . Fully convolutional neural network based CSI limited feedback for FDD massive MIMO systems [J ] . IEEE Transactions on Cognitive Communications and Networking , 2021 , PP ( 99 ): 1 .
JUHA M , PEKKA K , TOMMI J , et al . WINNER II channel models [M ] . New Jersey : Wiley Publishing , 2008 .
0
浏览量
499
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构