浏览全部资源
扫码关注微信
火箭军工程大学,陕西 西安 710025
[ "冯晓伟(1986- ),男,四川绵阳人,博士,火箭军工程大学讲师,主要研究方向为随机信号处理、工业过程监控技术等" ]
[ "许剑锋(1977- ),男,河北石家庄人,博士,火箭军工程大学副教授、硕士生导师,主要研究方向为雷达信号处理技术" ]
[ "何川(1985- ),男,山东莱芜人,博士,火箭军工程大学副教授、博士生导师,主要研究方向为信号处理技术" ]
网络出版日期:2022-05,
纸质出版日期:2022-05-25
移动端阅览
冯晓伟, 许剑锋, 何川. 动态广义主成分分析及其在故障子空间建模中的应用[J]. 通信学报, 2022,43(5):92-101.
Xiaofeng FENG, Jianfeng XU, Chuan HE. Dynamic generalized principal component analysis with applications to fault subspace modeling[J]. Journal on communications, 2022, 43(5): 92-101.
冯晓伟, 许剑锋, 何川. 动态广义主成分分析及其在故障子空间建模中的应用[J]. 通信学报, 2022,43(5):92-101. DOI: 10.11959/j.issn.1000-436x.2022091.
Xiaofeng FENG, Jianfeng XU, Chuan HE. Dynamic generalized principal component analysis with applications to fault subspace modeling[J]. Journal on communications, 2022, 43(5): 92-101. DOI: 10.11959/j.issn.1000-436x.2022091.
针对传统故障子空间建模方法未考虑故障数据中同时包含正常工况信息和故障工况信息的实际情况,或未考虑故障数据中的动态因素而导致的对故障子空间提取不够准确的问题,提出了一种动态广义主成分分析方法。通过将带延迟的输入数据进行空间重组,采用广义主成分分析方法提取正常工况和各故障工况之间的动态特征信息,实现对故障子空间的准确建模,并进一步建立故障库实现故障诊断。仿真结果表明,所提方法能够准确提取动态过程的故障子空间,并可用于动态工业过程的故障诊断。
In order to solve the problem of inaccurate modeling of fault subspace
traditional fault subspace modeling method did not consider the fact that fault data contain both normal and fault condition information
or did not consider the dynamic factors in the fault data
these flaws may lead to the case that the fault subspace cannot be extracted accurately
a dynamic generalized principal component analysis (DGPCA) method was proposed.By reorganizing the lagged input data
the dynamic characteristics between normal and fault data were extracted by the proposed DGPCA method
and then the fault subspaces could be modeled for further fault diagnosis.Finally
simulation results confirm the availability of the proposed method for fault subspace modeling and fault diagnosis.
PRAKASH O , SAMANTARAY A K , BHATTACHARYYA R . Model-based multi-component adaptive prognosis for hybrid dynamical systems [J ] . Control Engineering Practice , 2018 , 72 : 1 - 18 .
GE Z Q , SONG Z H , GAO F R . Review of recent research on data-based process monitoring [J ] . Industrial & Engineering Chemistry Research , 2013 , 52 ( 10 ): 3543 - 3562 .
CHEN J , LIAO C M . Dynamic process fault monitoring based on neural network and PCA [J ] . Journal of Process Control , 2002 , 12 ( 2 ): 277 - 289 .
LIU L , WANG Z S , ZHANG H G . Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters [J ] . IEEE Transactions on Automation Science and Engineering , 2017 , 14 ( 1 ): 299 - 313 .
RATO T , REIS M , SCHMITT E , et al . A systematic comparison of PCA-based statistical process monitoring methods for high-dimensional,time-dependent processes [J ] . AIChE Journal , 2016 , 62 ( 5 ): 1478 - 1493 .
KETELAERE B D , HUBERT M , SCHMITT E . Overview of PCA-based statistical process-monitoring methods for time-dependent,high-dimensional data [J ] . Journal of Quality Technology , 2015 , 47 ( 4 ): 318 - 335 .
WANG G , YIN S . Quality-related fault detection approach based on orthogonal signal correction and modified PLS [J ] . IEEE Transactions on Industrial Informatics , 2015 , 11 ( 2 ): 398 - 405 .
PENG K X , ZHANG K , YOU B , et al . Quality-relevant fault monitoring based on efficient projection to latent structures with application to hot strip mill process [J ] . IET Control Theory & Applications , 2015 , 9 ( 7 ): 1135 - 1145 .
CHENG C Y , HSU C C , CHEN M C . Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes [J ] . Industrial & Engineering Chemistry Research , 2010 , 49 ( 5 ): 2254 - 2262 .
JAFFEL I , TAOUALI O , HARKAT M F , et al . Kernel principal component analysis with reduced complexity for nonlinear dynamic process monitoring [J ] . The International Journal of Advanced Manufacturing Technology , 2017 , 88 : 3265 - 3279 .
MANSOURI M , NOUNOU M N , NOUNOU H N . Multiscale kernel PLS-based exponentially weighted-GLRT and its application to fault detection [J ] . IEEE Transactions on Emerging Topics in Computational Intelligence , 2019 , 3 ( 1 ): 49 - 58 .
JENG J C . Adaptive process monitoring using efficient recursive PCA and moving window PCA algorithms [J ] . Journal of the Taiwan Institute of Chemical Engineers , 2010 , 41 ( 4 ): 475 - 481 .
DONG Y N , QIN S J . A novel dynamic PCA algorithm for dynamic data modeling and process monitoring [J ] . Journal of Process Control , 2018 , 67 : 1 - 11 .
DONG Y N , QIN S J . New dynamic predictive monitoring schemes based on dynamic latent variable models [J ] . Industrial & Engineering Chemistry Research , 2020 , 59 ( 6 ): 2353 - 2365 .
DONG Y N , QIN S J . Dynamic-inner partial least squares for dynamic data modeling [J ] . IFAC-PapersOnLine , 2015 , 48 ( 8 ): 117 - 122 .
DONG Y N , QIN S J . Regression on dynamic PLS structures for supervised learning of dynamic data [J ] . Journal of Process Control , 2018 , 68 : 64 - 72 .
ALCALA C F , QIN S J . Reconstruction-based contribution for process monitoring [J ] . Automatica , 2009 , 45 ( 7 ): 1593 - 1600 .
YUE H H , QIN S J . Reconstruction-based fault identification using a combined index [J ] . Industrial & Engineering Chemistry Research , 2001 , 40 ( 20 ): 4403 - 4414 .
宁超 , 陈茂银 , 周东华 . 基于阈值故障子空间提取算法的多重故障重构 [J ] . 上海交通大学学报 , 2015 , 49 ( 6 ): 780 - 785 .
NING C , CHEN M Y , ZHOU D H . Fault reconstruction for multiple failure modes based on threshold fault subspace extraction algorithm [J ] . Journal of Shanghai Jiao Tong University , 2015 , 49 ( 6 ): 780 - 785 .
ZHAO C H , GAO F R . Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis [J ] . IEEE Transactions on Control Systems Technology , 2016 , 24 ( 3 ): 928 - 939 .
杜柏阳 , 孔祥玉 , 冯晓伟 . 基于广义主成分分析的重构故障子空间建模方法 [J ] . 控制与决策 , 2021 , 36 ( 4 ): 808 - 814 .
DU B Y , KONG X Y , FENG X W . Reconstructed fault subspace modelling method based on generalized principal component analysis [J ] . Control and Decision , 2021 , 36 ( 4 ): 808 - 814 .
KU W F , STORER R H , GEORGAKIS C . Disturbance detection and isolation by dynamic principal component analysis [J ] . Chemometrics and Intelligent Laboratory Systems , 1995 , 30 ( 1 ): 179 - 196 .
JACKSON J E . A user’s guide to principal components [M ] . Hoboken : John Wiley & Sons,Inc. , 1991 .
MACGREGOR J F , KOURTI T . Statistical process control of multivariate processes [J ] . Control Engineering Practice , 1995 , 3 ( 3 ): 403 - 414 .
ZHAO C H , GAO F R . Fault subspace selection approach combined with analysis of relative changes for reconstruction modeling and multifault diagnosis [J ] . IEEE Transactions on Control Systems Technology , 2016 , 24 ( 3 ): 928 - 939 .
LI G , QIN S J , ZHOU D H . A new method of dynamic latent-variable modeling for process monitoring [J ] . IEEE Transactions on Industrial Electronics , 2014 , 61 ( 11 ): 6438 - 6445 .
0
浏览量
194
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构