浏览全部资源
扫码关注微信
清华大学航天航空学院航空宇航电子系统实验室,北京 100084
[ "张超(1978- ),男,陕西城固人,博士,清华大学教授、博士生导师,主要研究方向为涡旋电磁波传输与探测,以及航空宇航电子系统" ]
[ "王元赫(1997- ),男,江苏涟水人,清华大学博士生,主要研究方向为电磁波轨道角动量传输与探测" ]
网络出版日期:2022-06,
纸质出版日期:2022-06-25
移动端阅览
张超, 王元赫. 论涡旋电磁波轨道角动量传输新维度[J]. 通信学报, 2022,43(6):211-222.
Chao ZHANG, Yuanhe WANG. New dimension in vortex electro-magnetic wave transmission with orbital angular momentum[J]. Journal on communications, 2022, 43(6): 211-222.
张超, 王元赫. 论涡旋电磁波轨道角动量传输新维度[J]. 通信学报, 2022,43(6):211-222. DOI: 10.11959/j.issn.1000-436x.2022087.
Chao ZHANG, Yuanhe WANG. New dimension in vortex electro-magnetic wave transmission with orbital angular momentum[J]. Journal on communications, 2022, 43(6): 211-222. DOI: 10.11959/j.issn.1000-436x.2022087.
目的:作为未来移动通信中潜在核心关键技术的涡旋电磁波轨道角动量(OAM)传输技术,易与传统基于多天线的多输入多输出(MIMO)传输技术相混淆,从而引发关于涡旋电磁波OAM是否在无线传输中提供新维度的争议。本文明确了只有电磁波量子携带内禀OAM的涡旋电磁波传输系统才可以获得OAM新维度;统计态OAM涡旋波束中的电磁波量子形成的外部OAM与空域维度相耦合,无法构成MIMO传输以外新维度。
方法:本文从电磁波资源利用和发展的历史出发,分析电磁波OAM的物理特征,给出了含有OAM维度的香农信道容量公式,指明了无线传输中OAM新维度的功率复用对容量提升的意义。为了进一步体现OAM新维度特性,依据信道容量的不同,将涡旋电磁波OAM传输系统划分为四个典型信道容量区域。以微波频段为例,指出了只有基于涡旋微波量子的量子态OAM涡旋电磁波传输可以超越传统多天线MIMO容量界,并形成含有OAM维度的新MIMO容量界。
结果:为了说明量子态OAM涡旋电磁波和统计态OAM涡旋电磁波束的应用范围和突出优点,本文对典型OAM传输系统按信道容量由高到低划分为A至D四个区域。其中,区域A属于具有物理新维度的量子态OAM传输系统,采用涡旋微波量子传输信息,其容量界相比于传统多天线MIMO容量界获得提升;区域B、C和D属于统计态OAM涡旋波束,虽然不具备新维度,但在视距直射(LoS)信道中有突出表现。与传统视距MIMO传输相比,区域B为OAM专用天线传输系统,可恢复信道正交性和信道矩阵的秩,获得容量大幅提升,代表着统计态OAM涡旋波束使用的发展趋势;区域C为阵列天线全相位面传输系统,系统复杂度低,且作为早期OAM技术代表,技术成熟度较高;区域D为部分相位传输系统,不需要接收完整相位面,适用于长距离传输。
结论:针对学术界中电磁波OAM是否为无线传输系统提供新维度的争议,本文从电磁波的利用历史出发,分析了电磁波OAM传输机理,并指出:无论是内禀OAM还是外部OAM,都是电磁波可以利用的新物理量,但只有基于内禀OAM的量子态OAM涡旋微波量子传输可以在无线传输中产生新维度;基于外部OAM的统计态OAM涡旋波束则无法构成MIMO传输以外的新维度,只能算作具有螺旋相位面波束赋形能力的多天线MIMO传输系统特例。
Purpose:The vortex Electro-Magnetic (EM) wave transmission system with Orbital Angular Momentum (OAM)
which is the potential key technology in future mobile communications
is easily confused with the traditional Multiple-Input Multiple-Output (MIMO) transmission system. This leads to the controversy on whether the OAM of vortex EM waves can provide the new dimension for the wireless transmission. This paper points out that only the vortex EM wave transmission system with vortex photons carrying Intrinsic OAM(IOAM)can obtain the new dimension.Furthermore
compared with the MIMO transmission with multiple antennas
Extrinsic OAM(EOAM)formed by the plane microwave photons in the statistical OAM beam is coupled with the space domain and cannot provide additional new dimension.
Method:This paper analyzes the physical characteristics of the EM wave with OAM and traces back to the history of the EM wave resource utilization and development. Moreover
the formula of Shannon channel capacity containing OAM dimension is given
and the significance of power multiplexing of new dimension for capacity enhancement is specified. In order to show the insight of the new dimensional characteristics of vortex EM waves
the typical vortex EM wave OAM transmission systems are classified into four different regions according to the channel capacity. Taking the microwave band as an example
it is pointed out that only the quantum OAM vortex EM wave transmission based on vortex microwave photons can surpass the traditional multi-antenna MIMO capacity bound and form a new MIMO capacity bound containing the OAM dimension.
Consequence:In order to illustrate the application scope and the outstanding advantages utilized by quantum OAM electromagnetic waves and statistical OAM Beams
this paper classifies the typical OAM transmission systems into four regions based on channel capacity.From the high channel capacity to the low channel capacity
Region A belongs to the quantum OAM transmission system with the new dimension of OAM
using vortex microwave photon to convey information
and the corresponding capacity bound can be enhanced to surpass the traditional multi-antenna MIMO capacity bound;Regions B
C and D belong to the statistical OAM vortex beams
which do not own new dimensions in MIMO transmission but have outstanding performance in the Line-of-Sight (LoS) channel. Compared with the traditional LoS MIMO transmission
Region B refers to the OAM dedicated antenna transmission system
which can recover the channel orthogonality and the rank of the channel matrix
so that a significant capacity enhancement is obtained
which represents the development trend of statistical OAM vortex beam.Region C refers to the array antenna full-phase plane transmission system.It enjoys low system complexity and high technical maturity as a representative of early OAM technology. Region D refers to the partial phase transmission system
which does not need to receive the complete phase plane
and is suitable for long-distance transmission.
Conclusion:In response to the controversy on whether OAM electromagnetic waves can provide the new dimension for the wireless transmission
this paper analyzes the physical insight of the EM wave transmission with OAM in history.It can be concluded that:both the intrinsic OAM and the extrinsic OAM can be utilized by EM waves
but only quantum OAM vortex microwave photons transmission based on intrinsic OAM can generate new dimensions in the wireless transmission besides the MIMO transmission. The statistical OAM vortex beams based on extrinsic OAM cannot constitute new dimensions beyond MIMO transmission and just belongs to the special case of multi-antenna MIMO systems which can generate the beams with helical phase front.
IMT-2030(6G)推进组 . 6G总体愿景与潜在关键技术 [R ] . 2021 .
IMT-2030(6G) Promotion Group . 6G overall vision and potential key technologies [R ] . 2021 .
谢翔东 , 何耀宇 , 张超 . 涡旋电磁波轨道角动量传输技术 [J ] . 邮电设计技术 , 2021 ( 12 ): 6 - 13 .
XIE X D , HE Y Y , ZHANG C . Vortex electromagnetic waves transmission with orbital angular momentum [J ] . Designing Techniques of Posts and Telecommunications , 2021 ( 12 ): 6 - 13 .
JIANG Z , WERNER D H . Electromagnetic vortices:wave phenomena and engineering applications [M ] . New Jersey : Wiley-IEEE Press , 2021 .
CHEN R , ZHOU H , LONG W X , et al . Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems [J ] . China Communications , 2020 , 17 ( 9 ): 119 - 127 .
EDFORS O , JOHANSSON A J . Is orbital angular momentum (OAM) based radio communication an unexploited area? [J ] . IEEE Transactions on Antennas and Propagation , 2012 , 60 ( 2 ): 1126 - 1131 .
RUFFATO G , MASSARI M , ROMANATO F . Generation of high-order Laguerre-Gaussian modes by means of spiral phase plates [J ] . Optics Letters , 2014 , 39 ( 17 ): 5094 - 5097 .
MAHMOULI F E , WALKER S D . 4-Gbit/s uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel [J ] . IEEE Wireless Communications Letters , 2013 , 2 ( 2 ): 223 - 226 .
MAXWELL J C . A dynamical theory of the electromagnetic field [J ] . Philosophical Transactions of the Royal Society of London , 1865 , 155 : 459 - 512 .
BELROSE J S , . Fessenden and Marconi:their differing technologies and transatlantic experiments during the first decade of this century [C ] // Proceedings of the 1995 International Conference on 100 Years of Radio . London:IET , 1995 : 32 - 43 .
LARSSON E G , EDFORS O , TUFVESSON F , et al . Massive MIMO for next generation wireless systems [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 186 - 195 .
MESLEH R Y , HAAS H , SINANOVIC S , et al . Spatial modulation [J ] . IEEE Transactions on Vehicular Technology , 2008 , 57 ( 4 ): 2228 - 2241 .
O’NEIL A T , MACVICAR I , ALLEN L , et al . Intrinsic and extrinsic nature of the orbital angular momentum of a light beam [J ] . Physical Review Letters , 2002 , 88 ( 5 ): 053601 .
HARRIS J , GRILLO V , MAFAKHERI E , et al . Structured quantum waves [J ] . Nature Physics , 2015 , 11 ( 8 ): 629 - 634 .
GRIFFITHS D J , SCHROETER D F . Introduction to quantum mechanics [M ] . Cambridge : Cambridge University Press , 2018 .
JACKSON J D . Classical electrodynamics 3rd edition [M ] . New York : Wiley , 1998 .
FEYNMAN R P . Quantum electrodynamics [M ] .[S.l. ] : Avalon Publishing , 1998 .
任之恭 . 微波量子物理学 [M ] . 北京 : 科学出版社 , 1980 .
RENG Z G . Microwave quantum physics [M ] . Beijing : Science Press , 1980 .
ALLEN L , BEIJERSBERGEN M W , SPREEUW R J , et al . Orbital angular momentum of light and the transformation of Laguerre- Gaussian laser modes [J ] . Physical Review A,Atomic,Molecular,and Optical Physics , 1992 , 45 ( 11 ): 8185 - 8189 .
ANDREWS D L , BABIKER M . The Angular momentum of light [M ] . Cambridge : Cambridge University Press , 2009 .
THIDÉ B , THEN H , SJÖHOLM J . Utilization of photon orbital angular momentum in the low-frequency radio domain [J ] . Physical Review Letters , 2007 , 99 ( 8 ): 087701 .
魏克军 , 赵洋 , 徐晓燕 . 6G 愿景及潜在关键技术分析 [J ] . 移动通信 , 2020 , 44 ( 6 ): 17 - 21 .
WEI K J , ZHAO Y , XU X Y . Analysis of 6G vision and potential key technology [J ] . Mobile Communications , 2020 , 44 ( 6 ): 17 - 21 .
徐鹏飞 . 电磁波轨道角动量量子态研究 [D ] . 北京:清华大学 , 2020 .
XU P F . Research on orbital angular momentum quantum state [D ] . Beijing:Tsinghua University , 2020 .
ZHANG C , XU P F , JIANG X F . Vortex electron generated by microwave photon with orbital angular momentum in a magnetic field [J ] . AIP Advances , 2020 , 10 ( 10 ): 105230 .
ZHANG C , XU P F , JIANG X F . Detecting superposed orbital angular momentum states in the magnetic field by the crystal diffraction [J ] . The European Physical Journal Plus , 2021 , 136 ( 1 ): 1 - 13 .
GRILLO V , TAVABI A H , VENTURI F , et al . Measuring the orbital angular momentum spectrum of an electron beam [J ] . Nature Communications , 2017 , 8 : 15536 .
TAVABI A H , ROSI P , ROTUNNO E , et al . Experimental demonstration of an electrostatic orbital angular momentum sorter for electron beams [J ] . Physical Review Letters , 2021 , 126 ( 9 ): 094802 .
MCMORRAN B J , HARVEY T R , LAVERY M P J . Efficient sorting of free electron orbital angular momentum [J ] . New Journal of Physics , 2017 , 19 ( 2 ): 023053 .
MOHAMMADI S M , DALDORFF L K S , FOROZESH K , et al . Orbital angular momentum in radio:measurement methods [J ] . Radio Science , 2010 , 45 ( 4 ): 1 - 14 .
WU Q L , JIANG X F , ZHANG C . Attenuation of orbital angular momentum beam transmission with a parabolic antenna [J ] . IEEE An tennas and Wireless Propagation Letters , 2021 , 20 ( 10 ): 1849 - 1853 .
YAGI Y , SASAKI H , YAMADA T , et al . 200 Gb/s wireless transmission using dual-polarized OAM-MIMO multiplexing with uniform circular array on 28 GHz band [J ] . IEEE Antennas and Wireless Propagation Letters , 2021 , 20 ( 5 ): 833 - 837 .
ZHANG W T , ZHENG S L , CHEN Y L , et al . Orbital angular momentum-based communications with partial arc sampling receiving [J ] . IEEE Communications Letters , 2016 , 20 ( 7 ): 1381 - 1384 .
WANG Y H , ZHANG C . Enhanced Shannon capacity with orbital angular momentum dimension [C ] // Proceeding of 2022 IEEE International Conference on Communications Workshops (ICC Workshops) . Piscataway:IEEE Press , 2022 : 1 - 6 .
ZHANG C , JIANG J , ZHAO Y F , et al . New degrees of freedom for beamforming manipulation in MIMO transmission with OAM [C ] // Proceedings of 2019 IEEE Globecom Workshops . Piscataway:IEEE Press , 2019 : 1 - 6 .
马路 . 电磁波轨道角动量长距离传输方法研究 [D ] . 北京:清华大学 , 2017 .
MA L . Research on the method of long-distance transmission of electro-magnetic waves with orbital angular momentum [D ] . Beijing:Tsinghua University , 2017 .
李晋 . 基于智能压缩感知的长距离轨道角动量传输技术研究 [D ] . 北京:清华大学 , 2020 .
LI J . Research on long distance orbital angular momentum transmission technology based on intelligent compressive sensing [D ] . Beijing:Tsinghua University , 2020 .
赵宇飞 . 涡旋电磁波长距离大容量传输方法研究 [D ] . 北京:清华大学 , 2020 .
ZHAO Y F . Research on long distance and high capacity transmission with orbital angular momentum wave [D ] . Beijing:Tsinghua University , 2020 .
ZHANG C , ZHAO Y F . Orbital angular momentum nondegenerate index mapping for long distance transmission [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 11 ): 5027 - 5036 .
ZHAO Y F , ZHANG C . Distributed antennas scheme for orbital angular momentum long-distance transmission [J ] . IEEE Antennas and Wireless Propagation Letters , 2020 , 19 ( 2 ): 332 - 336 .
WU Q L , ZHANG C . Ultra narrow band transmission system with orbital angular momentum [C ] // Proceedings of 2021 IEEE International Conference on Communications Workshops . Piscataway:IEEE Press , 2021 : 1 - 5 .
蒋金 . 涡旋电磁波 OAM 维度空间和波束赋形方法研究 [D ] . 北京:清华大学 , 2021 .
JIANG J . Research on OAM dimensional space and beamforming transmission method of vortex electromagnetic wave [D ] . Beijing:Tsinghua University , 2021 .
LYU R Y , CHENG W C , ZHANG W . Modeling and performance analysis of OAM-NFC systems [J ] . IEEE Transactions on Communications , 2021 , 69 ( 12 ): 7986 - 8001 .
ZHANG C , MA L . Millimetre wave with rotational orbital angular momentum [J ] . Scientific Reports , 2016 , 6 ( 1 ): 31921 .
张超 , 姜学峰 . 电磁波轨道角动量隐蔽传输系统:CN108540256A [P ] . 2018 - 09 - 14 .
ZHANG C , JIANG X F . Hidden transmission system based on OAM of electromagnetic wave:CN108540256A [P ] . 2018 - 09 - 14 .
ZHANG C , JIANG X F . Secure high-speed spread spectrum transmission system with orbital angular momentum [J ] . IET Communications , 2020 , 14 ( 11 ): 1709 - 1717 .
JIANG X F , ZHANG C . Secure transmission aided by orbital angular momentum jamming with imperfect CSI [C ] // Proceedings of 2019 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2019 : 1 - 6 .
LIANG L P , CHENG W C , ZHANG W , et al . Mode hopping for anti-jamming in radio vortex wireless communications [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 8 ): 7018 - 7032 .
郭桂蓉 , 胡卫东 , 杜小勇 . 基于电磁涡旋的雷达目标成像 [J ] . 国防科技大学学报 , 2013 , 35 ( 6 ): 71 - 76 .
GUO G R , HU W D , DU X Y . Electromagnetic vortex based radar target imaging [J ] . Journal of National University of Defense Technology , 2013 , 35 ( 6 ): 71 - 76 .
陈东 . 电磁波轨道角动量雷达探测与成像方法研究 [D ] . 北京:清华大学 , 2019 .
CHEN D . Research on detection and imaging methodology for orbital angular momentum based radar [D ] . Beijing:Tsinghua University , 2019 .
ZHANG C , CHEN D , JIANG X F . RCS diversity of electromagnetic wave carrying orbital angular momentum [J ] . Scientific Reports , 2017 , 7 ( 1 ): 15412 .
张超 , 王元赫 , 姜学峰 . 涡旋微波量子雷达 [J ] . 雷达学报 , 2021 , 10 ( 5 ): 749 - 759 .
ZHANG C , WANG Y H , JIANG X F . Quantum radar with vortex microwave photons [J ] . Journal of Radars , 2021 , 10 ( 5 ): 749 - 759 .
0
浏览量
674
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构