浏览全部资源
扫码关注微信
天津大学智能与计算学部,天津 300350
[ "赵增华(1974- ),女,河南南乐人,天津大学副教授、硕士生导师,主要研究方向为移动和普适计算、室内定位、水下无线网络、软件定义无线网络、计算机网络协议和系统等" ]
[ "童跃凡(1999- ),女,福建莆田人,天津大学硕士生,主要研究方向为室内定位等" ]
[ "崔佳洋(1998- ),男,河北唐山人,天津大学硕士生,主要研究方向为室内定位等" ]
网络出版日期:2022-04,
纸质出版日期:2022-04-25
移动端阅览
赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022,43(4):143-153.
Zenghua ZHAO, Yuefan TONG, Jiayang CUI. Device-independent Wi-Fi fingerprinting indoor localization model based on domain adaptation[J]. Journal on communications, 2022, 43(4): 143-153.
赵增华, 童跃凡, 崔佳洋. 基于域自适应的Wi-Fi指纹设备无关室内定位模型[J]. 通信学报, 2022,43(4):143-153. DOI: 10.11959/j.issn.1000-436x.2022069.
Zenghua ZHAO, Yuefan TONG, Jiayang CUI. Device-independent Wi-Fi fingerprinting indoor localization model based on domain adaptation[J]. Journal on communications, 2022, 43(4): 143-153. DOI: 10.11959/j.issn.1000-436x.2022069.
基于Wi-Fi指纹定位方法在大规模实际应用中存在设备多样性问题,定位精度受到极大影响。提出了一种设备无关的 Wi-Fi 指纹室内定位模型 DeviceTransfer。该模型基于深度学习的域自适应理论,把智能手机的设备类型作为域,通过对抗训练来提取任务相关而设备无关的Wi-Fi数据特征,并把学习到的源域位置信息迁移到目标域上。采用预训练和联合训练来提高模型训练的稳定性并加快收敛。在教学楼和商场2个真实场景中,使用 4 台不同型号的智能手机验证模型的性能。实验结果表明,DeviceTransfer 能够有效提取设备无关的Wi-Fi数据特征。只使用一台手机在参考点采集Wi-Fi指纹,使用其他型号手机在线定位也能获得较高的定位精度,降低了定位成本。
In real-world large-scale deployments of indoor localization
Wi-Fi fingerprinting approaches suffer from device diversity problem which impacts the localization accuracy significantly.A device-independent Wi-Fi fingerprint indoor localization model DeviceTransfer was proposed.Based on the domain adaptation theory of deep learning
the device type of the smartphone was taken as the domain
the task-related and device-independent Wi-Fi data features were extracted through adversarial training
and the learned source domain location information was transferred to the target domain.Pre-training and joint training were employed to improve model training stability and to accelerate convergence.The performance of DeviceTransfer was evaluated using four types of smartphones in two real-world indoor environments: a school building and a shopping mall.The experimental results show that DeviceTransfer effectively extracts device-independent Wi-Fi fingerprint features.Using only one type of phone to collect Wi-Fi fingerprints
online localization using other types still achieves high localization accuracy
thus reducing localization cost significantly.
HE S N , CHAN S H G . Wi-Fi fingerprint-based indoor positioning:recent advances and comparisons [J ] . IEEE Communications Surveys& Tutorials , 2016 , 18 ( 1 ): 466 - 490 .
王慧强 , 高凯旋 , 吕宏武 . 高精度室内定位研究评述及未来演进展望 [J ] . 通信学报 , 2021 , 42 ( 7 ): 198 - 210 .
WANG H Q , GAO K X , LYU H W . Survey of high-precision localization and the prospect of future evolution [J ] . Journal on Communications , 2021 , 42 ( 7 ): 198 - 210 .
LUI G , GALLAGHER T , LI B H , et al . Differences in RSSI readings made by different Wi-Fi chipsets:a limitation of WLAN localization [C ] // Proceedings of 2011 International Conference on Localization and GNSS (ICL-GNSS) . Piscataway:IEEE Press , 2011 : 53 - 57 .
ZHENG V W , PAN S J , YANG Q , et al . Transferring multi-device localization models using latent multi-task learning [C ] // Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence . California:AAAI Press , 2008 : 1427 - 1432 .
TSUI A W , CHUANG Y H , CHU H H . Unsupervised learning for solving RSS hardware variance problem in Wi-Fi localization [J ] . Mobile Networks and Applications , 2009 , 14 ( 5 ): 677 - 691 .
HUANG C C , MANH H N , WANG Y S . An self-adaptive wireless indoor localization system for device diversity [C ] // Proceedings of 2016 IEEE International Conference on Consumer Electronics . Piscataway:IEEE Press , 2016 : 1 - 2 .
ZHANG L Y , MA L , XU Y B , et al . Linear regression algorithm against device diversity for indoor WLAN localization system [C ] // Proceedings of 2017 IEEE Global Communications Conference . Piscataway:IEEE Press , 2017 : 1 - 6 .
ZHANG L Y , MENG X L , FANG C . Linear regression algorithm against device diversity for the WLAN indoor localization system [J ] . Wireless Communications and Mobile Computing,2021 , 2021 :5530396.
ZHAO H , DES-COMBES R T , ZHANG K , et al . On learning invariant representations for domain adaptation [C ] // Proceedings of the 36th International Conference on Machine Learning .[S.l.:s.n. ] , 2019 : 7523 - 7532 .
YANG S , DESSAI P , VERMA M , et al . FreeLoc:calibration-free crowdsourced indoor localization [C ] // Proceedings of IEEE INFOCOM . Piscataway:IEEE Press , 2013 : 2481 - 2489 .
CAI C W , DENG L , LI S F . CSI-based device-free indoor localization using convolutional neural networks [C ] // Proceedings of 2018 IEEE 4th International Conference on Computer and Communications . Piscataway:IEEE Press , 2018 : 753 - 757 .
ASHRAF I , KANG M Y , HUR S , et al . MINLOC:magnetic field patterns-based indoor localization using convolutional neural networks [J ] . IEEE Access , 2020 , 8 : 66213 - 66227 .
WILSON G , COOK D J . A survey of unsupervised deep domain adaptation [J ] . ACM Transactions on Intelligent Systems and Technology , 2020 , 11 ( 5 ): 1 - 46 .
SUN B , FENG J , SAENKO K . Return of frustratingly easy domain adaptation [C ] // Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence . California:AAAI Press , 2016 : 2058 - 2065 .
KANG G L , JIANG L , YANG Y , et al . Contrastive adaptation network for unsupervised domain adaptation [C ] // Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2019 : 4888 - 4897 .
GHIFARY M , KLEIJN W B , ZHANG M , et al . Deep reconstruction-classification networks for unsupervised domain adaptation [C ] // Proceedings of the European Conference on Computer Vision . Berlin:Springer , 2016 : 597 - 613 .
BOUSMALIS K , TRIGEORGIS G , SILBERMAN N , et al . Domain-separation networks [J ] . Advances in Neural Information Processing Systems , 2016 , 29 : 343 - 351 .
MATHUR A , ISOPOUSSU A , KAWSAR F , et al . FlexAdapt:flexible cycle-consistent adversarial domain adaptation [C ] // Proceedings of 2019 18th IEEE International Conference on Machine Learning and Applications . Piscataway:IEEE Press , 2019 : 896 - 901 .
YI Z L , ZHANG H , TAN P , et al . DualGAN:unsupervised dual learning for image-to-image translation [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2017 : 2868 - 2876 .
GANIN Y , LEMPITSKY V . Unsupervised domain adaptation by backpropagation [C ] // Proceedings of the 32nd International Conference on Machine Learning . Cambridge:JMLR , 2015 : 1180 - 1189 .
ZHANG W C , OUYANG W L , LI W , et al . Collaborative and adversarial network for unsupervised domain adaptation [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 3801 - 3809 .
CHEN C H , MIAO Y S , LU C X , et al . Motion transformer:transferring neural inertial tracking between domains [C ] // Proceedings of the AAAI Conference on Artificial Intelligence . NewYork:ACM Press , 2019 , 33 : 8009 - 8016 .
SOHN K , LEE H , YAN X . Learning structured output representation using deep conditional generative models [J ] . Advances in neural information processing systems , 2015 , 28 : 3483 - 3491 .
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J ] . arXiv Preprint,arXiv:1411.1784 , 2014 .
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [C ] // Proceedings of the 27th International Conference on Neural Information Processing Systems . Cambridge:MIT Press , 2014 : 2672 - 2680 .
ZHU J Y , PARK T , ISOLA P , et al . Unpaired image-to-image translation using cycle-consistent adversarial networks [C ] // Proceedings of 2017 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2017 : 2242 - 2251 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv Preprint,arXiv:1412.6980 , 2014 .
PASZKE A , GROSS S , CHINTALA S , et al . Automatic differentiation in pytorch [C ] // Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017) . New York:Curran Associates Inc , 2017 : 1 - 4 .
SONG X D , FAN X C , HE X J , et al . CNNLoc:deep-learning based indoor localization with WiFi fingerprinting [C ] // Proceedings of 2019 IEEE SmartWorld,Ubiquitous Intelligence & Computing,Advanced& Trusted Computing,Scalable Computing & Communications,Cloud& Big Data Computing,Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) . Piscataway:IEEE Press , 2019 : 589 - 595 .
HAN S , ZHAO C , MENG W X , et al . Cosine similarity based fingerprinting algorithm in WLAN indoor positioning against device diversity [C ] // Proceedings of 2015 IEEE International Conference on Communications . Piscataway:IEEE Press , 2015 : 2710 - 2714 .
IOFFE S , SZEGEDY C . Batch normalization:accelerating deep net-work training by reducing internal covariate shift [C ] // Proceedings of the 32nd International Conference on Machine Learning . Cambridge:JMLR , 2015 : 448 - 456 .
XU B , WANG N , CHEN T , et al . Empirical evaluation of rectified activations in convolutional network [J ] . arXiv Preprint,arXiv:1505.00853 , 2015 .
ZEILER M D , KRISHNAN D , TAYLOR G W , et al . Deconvolutional networks [C ] // Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2010 : 2528 - 2535 .
MIYATO T , KATAOKA T , KOYAMA M , et al . Spectral normalization for generative adversarial networks [J ] . arXiv Preprint,arXiv:1802.05957 , 2018 .
HE K M , ZHANG X Y , REN S Q , et al . Identity mappings in deep residual networks [C ] // Proceedings of the Computer Vision - ECCV 2016 . Berlin:Springer , 2016 : 630 - 645 .
0
浏览量
432
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构