浏览全部资源
扫码关注微信
1. 清华大学电子工程系,北京 100084
2. 北京信息科学与技术国家研究中心,北京 100084
[ "牛志升(1964-),男,河北秦皇岛人,博士,清华大学教授,主要研究方向为通信话务理论、排队论、通信网络的流量控制与性能分析、无线网络的资源分配及跨层优化、通信与广播融合网络、绿色通信与网络等" ]
[ "周盛(1983-),男,上海人,博士,清华大学副教授、博士生导师,主要研究方向为绿色无线通信、车联网、移动云计算等" ]
[ "孙宇璇(1993-),女,辽宁大连人,博士,清华大学在站博士后,主要研究方向为移动边缘计算、边缘学习等" ]
网络出版日期:2022-02,
纸质出版日期:2022-02-25
移动端阅览
牛志升, 周盛, 孙宇璇. 面向“双碳”战略的绿色通信与网络:挑战与对策[J]. 通信学报, 2022,43(2):1-14.
Zhisheng NIU, Sheng ZHOU, Yuxuan SUN. Green communication and networking for Carbon-peaking and Carbon-neutrality: challenges and solutions[J]. Journal on communications, 2022, 43(2): 1-14.
牛志升, 周盛, 孙宇璇. 面向“双碳”战略的绿色通信与网络:挑战与对策[J]. 通信学报, 2022,43(2):1-14. DOI: 10.11959/j.issn.1000-436x.2022041.
Zhisheng NIU, Sheng ZHOU, Yuxuan SUN. Green communication and networking for Carbon-peaking and Carbon-neutrality: challenges and solutions[J]. Journal on communications, 2022, 43(2): 1-14. DOI: 10.11959/j.issn.1000-436x.2022041.
面向国家“碳达峰”与“碳中和”的“双碳”战略需求,移动通信与网络需要在满足不断增长的业务需求前提下大幅度降低全网能耗,因此需要研究使用更少的能量传递更多信息(SMILE
send more information bits with less energy)的理论与技术。为了应对该挑战,仅靠无线传输技术的改进和硬件实现水平的提高是远远不够的,需要从系统和网络的角度探索能量的高效利用机理与方法。从能量的“节流”和“开源”2 个维度展开,并针对日益增长的计算能耗给出解决方案。具体地,通过引入超蜂窝网络架构实现网络的柔性覆盖与弹性接入,使业务基站和边缘服务器在业务量较低时可以进入休眠状态,减少能量的浪费(即“节流”)。同时,大量引入可再生绿色能源(即“开源”),通过能量流与信息流的智能适配,大幅降低电网的能耗。进一步地,通过网络功能虚拟化、通信与计算资源的高能效协同,以及移动智能体的分布式计算与协同等手段,实现绿色计算与人工智能算法。
Driven by the Carbon-peaking and Carbon-neutrality strategic goals
future mobile communication and networks need to drastically reduce energy consumption while satisfying the growing traffic demand.Therefore
it is necessary to study the theories and technologies used to send more information bits with less energy (SMILE).To meet the challenge
it was far from enough to rely solely on the improvements of wireless transmission technologies and hardware.It was necessary to explore efficient energy utilization mechanisms from the perspective of the system and network.Both energy saving and renewable energy utilization approaches were proposed
and solutions for the growing computing energy consumption were provided.Specifically
by introducing hyper-cellular network
agile coverage and elastic access were realized
and thus service base stations and edge servers could enter the sleeping mode to save energy when the traffic volume was low.Meanwhile
by the introduction of renewable energy and the smart adaption of energy flow and information flow
the energy consumption of the power grid could be greatly reduced.Furthermore
green computing and artificial intelligence could be realized through network function virtualization
energy-efficient coordination of communication and compute resources
and distributed computing and coordination approaches of moving agents.
NIU Z S . TANGO:traffic-aware network planning and green operation [J ] . IEEE Wireless Communications , 2011 , 18 ( 5 ): 25 - 29 .
牛志升 , 郑福春 , 杨晨阳 , 等 . 基于超蜂窝架构的绿色通信专刊编者按 [J ] . 中国科学:信息科学 , 2017 , 47 ( 5 ): 527 - 528 .
NIU Z S , ZHENG F C , YANG C Y , et al . Editorial of the special issue on hyper-cellular communications [J ] . SCIENTIA SINICA Informationis , 2017 , 47 ( 5 ): 527 - 528 .
GUO X Y , NIU Z S , ZHOU S , et al . Delay-constrained energy-optimal base station sleeping control [J ] . IEEE Journal on Selected Areas in Communications , 2016 , 34 ( 5 ): 1073 - 1085 .
WU J , ZHOU S , NIU Z S . Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks [J ] . IEEE Transactions on Wireless Communications , 2013 , 12 ( 8 ): 4196 - 4209 .
GONG J , ZHOU S , NIU Z S . A dynamic programming approach for base station sleeping in cellular networks [J ] . IEICE Transactions on Communications , 2012 , E95-B ( 2 ): 551 - 562 .
ZHANG S , GONG J , ZHOU S , et al . How many small cells can be turned off via vertical offloading under a separation architecture? [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 10 ): 5440 - 5453 .
CAO D X , ZHOU S , NIU Z S . Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks [J ] . IEEE Transactions on Wireless Communications , 2013 , 12 ( 9 ): 4350 - 4362 .
KAMITSOS I , ANDREW L , KIM H , et al . Optimal sleep patterns for serving delay-tolerant jobs [C ] // Proceedings of the 1st International Conference on Energy-Efficient Computing and Networking e-Energy '10 . New York:ACM Press , 2010 : 31 - 40 .
LENG B J , GUO X Y , ZHENG X , et al . A wait-and-see two-threshold optimal sleeping policy for a single server with bursty traffic [J ] . IEEE Transactions on Green Communications and Networking , 2017 , 1 ( 4 ): 528 - 540 .
JIANG Z Y , KRISHNAMACHARI B , ZHOU S , et al . Optimal sleeping mechanism for multiple servers with MMPP-based bursty traffic arrival [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 3 ): 436 - 439 .
LIU J C , KRISHNAMACHARI B , ZHOU S , et al . DeepNap:data-driven base station sleeping operations through deep reinforcement learning [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 6 ): 4273 - 4282 .
ZHOU S , CHEN T J , CHEN W , et al . Outage minimization for a fading wireless link with energy harvesting transmitter and receiver [J ] . IEEE Journal on Selected Areas in Communications , 2015 , 33 ( 3 ): 496 - 511 .
HU C S , GONG J , WANG X L , et al . Optimal green energy utilization in MIMO systems with hybrid energy supplies [J ] . IEEE Transactions on Vehicular Technology , 2015 , 64 ( 8 ): 3675 - 3688 .
GONG J , THOMPSON J S , ZHOU S , et al . Base Station sleeping and resource allocation in renewable energy powered cellular networks [J ] . IEEE Transactions on Communications , 2014 , 62 ( 11 ): 3801 - 3813 .
ZHOU S , GONG J , ZHOU Z Y , et al . GreenDelivery:proactive content caching and push with energy-harvesting-based small cells [J ] . IEEE Communications Magazine , 2015 , 53 ( 4 ): 142 - 149 .
GONG J , ZHOU S , ZHOU Z Y , et al . Policy optimization for content push via energy harvesting small cells in heterogeneous networks [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 2 ): 717 - 729 .
张平 , 陶运铮 , 张治 . 5G 若干关键技术评述 [J ] . 通信学报 , 2016 , 37 ( 7 ): 15 - 29 .
ZHANG P , TAO Y Z , ZHANG Z . Survey of several key technologies for 5G [J ] . Journal on Communications , 2016 , 37 ( 7 ): 15 - 29 .
ZHOU S , ZHAO T , NIU Z S , et al . Software-defined hyper-cellular architecture for green and elastic wireless access [J ] . IEEE Communications Magazine , 2016 , 54 ( 1 ): 12 - 19 .
LIU J C , ZHOU S , GONG J , et al . Statistical multiplexing gain analysis of heterogeneous virtual base station pools in cloud radio access networks [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 8 ): 5681 - 5694 .
LIU J C , XU S G , ZHOU S , et al . Redesigning fronthaul for next-generation networks:beyond baseband samples and point-to-point links [J ] . IEEE Wireless Communications , 2015 , 22 ( 5 ): 90 - 97 .
SHI W Q , HOU Y Z , ZHOU S , et al . Improving device-edge cooperative inference of deep learning via 2-step pruning [C ] // Proceedings of IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops . Piscataway:IEEE Press , 2019 : 1 - 6 .
SHI W Q , ZHOU S , NIU Z S , et al . Joint device scheduling and resource allocation for latency constrained wireless federated learning [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 1 ): 453 - 467 .
SUN Y X , ZHOU S , NIU Z S , et al . Dynamic scheduling for over-the-air federated edge learning with energy constraints [J ] . IEEE Journal on Selected Areas in Communications , 2022 , 40 ( 1 ): 227 - 242 .
WANG G C , ZHOU S , ZHANG S , et al . SFC-based service provisioning for reconfigurable space-air-ground integrated networks [J ] . IEEE Journal on Selected Areas in Communications , 2020 , 38 ( 7 ): 1478 - 1489 .
黄永明 , 郑冲 , 张征明 , 等 . 大规模无线通信网络移动边缘计算和缓存研究 [J ] . 通信学报 , 2021 , 42 ( 4 ): 44 - 61 .
HUANG Y M , ZHENG C , ZHANG Z M , et al . Research on mobile edge computing and caching in massive wireless communication network [J ] . Journal on Communications , 2021 , 42 ( 4 ): 44 - 61 .
SUN Y X , ZHOU S , XU J . EMM:energy-aware mobility management for mobile edge computing in ultra dense networks [J ] . IEEE Journal on Selected Areas in Communications , 2017 , 35 ( 11 ): 2637 - 2646 .
ZHOU S , SUN Y X , JIANG Z Y , et al . Exploiting moving intelligence:delay-optimized computation offloading in vehicular fog networks [J ] . IEEE Communications Magazine , 2019 , 57 ( 5 ): 49 - 55 .
JIANG Z Y , ZHOU S , GUO X Y , et al . Task replication for deadline-constrained vehicular cloud computing:optimal policy,performance analysis,and implications on road traffic [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 1 ): 93 - 107 .
SUN Y X , GUO X Y , SONG J H , et al . Adaptive learning-based task offloading for vehicular edge computing systems [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 4 ): 3061 - 3074 .
SUN Y X , ZHOU S , NIU Z S . Distributed task replication for vehicular edge computing:performance analysis and learning-based algorithm [J ] . IEEE Transactions on Wireless Communications , 2021 , 20 ( 2 ): 1138 - 1151 .
ZHANG F , SUN Y X , ZHOU S . Coded computation over heterogeneous workers with random task arrivals [J ] . IEEE Communications Letters , 2021 , 25 ( 7 ): 2338 - 2342 .
0
浏览量
1190
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构