浏览全部资源
扫码关注微信
西安电子科技大学综合业务网国家重点实验室,陕西 西安 710071
[ "刘刚(1977-),男,陕西三原人,博士,西安电子科技大学副教授,主要研究方向为宽带无线传输技术" ]
[ "娄增进(1998-),男,山东潍坊人,西安电子科技大学硕士生,主要研究方向为宽带无线传输、大规模MIMO检测等" ]
[ "林勤华(1994-),女,山东威海人,西安电子科技大学硕士生,主要研究方向为MIMO检测技术" ]
[ "郭漪(1977-),女,陕西榆林人,博士,西安电子科技大学副教授,主要研究方向为B5G/6G智能传输关键技术" ]
网络出版日期:2022-02,
纸质出版日期:2022-02-25
移动端阅览
刘刚, 娄增进, 林勤华, 等. 基于Newton迭代算法的低复杂度信号检测算法[J]. 通信学报, 2022,43(2):109-117.
Gang LIU, Zengjin LOU, Qinhua LIN, et al. Low complexity signal detection algorithm based on Newton iterative algorithm[J]. Journal on communications, 2022, 43(2): 109-117.
刘刚, 娄增进, 林勤华, 等. 基于Newton迭代算法的低复杂度信号检测算法[J]. 通信学报, 2022,43(2):109-117. DOI: 10.11959/j.issn.1000-436x.2022035.
Gang LIU, Zengjin LOU, Qinhua LIN, et al. Low complexity signal detection algorithm based on Newton iterative algorithm[J]. Journal on communications, 2022, 43(2): 109-117. DOI: 10.11959/j.issn.1000-436x.2022035.
为了解决太赫兹通信系统超大规模MIMO检测计算复杂度高、收敛速度慢等问题,提出了基于Newton迭代算法的低复杂度信号检测算法。通过在Newton迭代算法中改进初始矩阵、加入步长因子,降低计算复杂度、提高收敛速度;通过加入调节因子,保证算法的稳定性、可靠性和场景适用性。仿真结果表明,相比传统算法,所提算法具有更低的计算复杂度和更快的收敛速度。当迭代次数为3次时,即可逼近MMSE算法性能。
In order to solve the problems of high computational complexity and slow convergence rate of ultra-massive MIMO detection in terahertz communication system
the low complexity signal detection algorithm based on Newton iterative algorithm was proposed.By improving the initial matrix and adding step factor in Newton iteration algorithm
the complexity of the algorithm was reduced
and the convergence speed was increased.By adding adjusting factors
the stability and reliability of the algorithm were guaranteed
and the applicability of the algorithm was also increased.Simulation results show that the proposed algorithm have lower computational complexity and faster convergence speed compared with traditional schemes.When the number of iterations is three
the detection performance is close to MMSE algorithm.
谢莎 , 李浩然 , 李玲香 , 等 . 太赫兹通信技术综述 [J ] . 通信学报 , 2020 , 41 ( 5 ): 168 - 186 .
XIE S , LI H R , LI L X , et al . Survey of terahertz communication technology [J ] . Journal on Communications , 2020 , 41 ( 5 ): 168 - 186 .
张平 , 牛凯 , 田辉 , 等 . 6G 移动通信技术展望 [J ] . 通信学报 , 2019 , 40 ( 1 ): 141 - 148 .
ZHANG P , NIU K , TIAN H , et al . Technology prospect of 6G mobile communications [J ] . Journal on Communications , 2019 , 40 ( 1 ): 141 - 148 .
卢安安 , 高西奇 . 大规模MIMO传输技术研究与展望 [J ] . 中国科学基金 , 2020 , 34 ( 2 ): 186 - 192 .
LU A A , GAO X Q . Prospects and overview of massive MIMO transmission [J ] . Bulletin of National Natural Science Foundation of China , 2020 , 34 ( 2 ): 186 - 192 .
HAN C , WU Y Z , CHEN Z , et al . Terahertz communications (TeraCom):challenges and impact on 6G wireless systems [J ] . arXiv Preprint,arXiv:1912.06040 , 2019 .
钱志鸿 , 肖琳 , 王雪 . 面向未来移动网络密集连接的关键技术综述 [J ] . 通信学报 , 2021 , 42 ( 4 ): 22 - 43 .
QIAN Z H , XIAO L , WANG X . Review on strategic technology of dense connection for the future mobile network [J ] . Journal on Communications , 2021 , 42 ( 4 ): 22 - 43 .
JIANG F , LI C , GONG Z J . A low complexity soft-output data detection scheme based on Jacobi method for massive MIMO uplink transmission [C ] // Proceedings of 2017 IEEE International Conference on Communications . Piscataway:IEEE Press , 2017 : 1 - 5 .
GAO X Y , DAI L L , YUEN C , et al . Low-complexity MMSE signal detection based on Richardson method for large-scale MIMO systems [C ] // Proceedings of 2014 IEEE 80th Vehicular Technology Conference . Piscataway:IEEE Press , 2014 : 1 - 5 .
BAKULIN M , REJEB T B , KREYNDELIN V , et al . Low-complexity iterative detector for massive MIMO systems [C ] // Proceedings of 2021 28th Conference of Open Innovations Association (FRUCT) . Piscataway:IEEE Press , 2021 : 22 - 27 .
ZHU D K , LI B Y , LIANG P . On the matrix inversion approximation based on Neumann series in massive MIMO systems [C ] // Proceedings of 2015 IEEE International Conference on Communications . Piscataway:IEEE Press , 2015 : 1763 - 1769 .
BJÖRCK Å . Numerical methods in matrix computations [M ] . Cham : Springer International Publishing , 2015 .
GAO X Y , DAI L L , HU Y T , et al . Matrix inversion-less signal detection using SOR method for uplink large-scale MIMO systems [C ] // Proceedings of 2014 IEEE Global Communications Conference . Piscataway:IEEE Press , 2014 : 3291 - 3295 .
ZHANG H B , PENG G Q , LIU L B . Low complexity signal detector based on Lanczos method for large-scale MIMO systems [C ] // Proceedings of 2016 6th International Conference on Electronics Information and Emergency Communication (ICEIEC) . Piscataway:IEEE Press , 2016 : 6 - 9 .
JIN F L , LIU Q F , LIU H , et al . A low complexity signal detection scheme based on improved Newton iteration for massive MIMO systems [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 748 - 751 .
CHATAUT R , AKL R . Efficient and low complex uplink detection for 5G massive MIMO systems [C ] // Proceedings of 2018 IEEE 19th Wireless and Microwave Technology Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
李航伟 , 唐加山 . 大规模MIMO系统改进MMSE信号检测算法 [J ] . 软件导刊 , 2019 , 18 ( 3 ): 70 - 72 , 77 .
LI H W , TANG J S . Improved MMSE signal detection algorithm for massive MIMO systems [J ] . Software Guide , 2019 , 18 ( 3 ): 70 - 72 , 77 .
TANG C , LIU C , YUAN L C , et al . High precision low complexity matrix inversion based on Newton iteration for data detection in the massive MIMO [J ] . IEEE Communications Letters , 2016 , 20 ( 3 ): 490 - 493 .
LARSSON E G , EDFORS O , TUFVESSON F , et al . Massive MIMO for next generation wireless systems [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 186 - 195 .
HORN R A , JOHNSON C R . Matrix analysis [M ] . Cambridge : Cambridge University Press , 1990 .
GOLUB G H , LOAN C . Matrix computations [M ] . Baltimore : Johns Hopkins University Press , 1996 .
0
浏览量
455
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构