浏览全部资源
扫码关注微信
1. 华中科技大学网络空间安全学院,湖北 武汉 430074
2. 湖北生物科技职业学院,湖北 武汉 430070
3. 鹏城实验室网络空间安全研究中心,广东 深圳 518000
4. 华中科技大学计算机科学与技术学院,湖北 武汉 430074
[ "孙海丽(1991- ),女,湖北武汉人,华中科技大学博士生,主要研究方向为工业物联网安全、入侵检测与预防、隐私保护、恶意行为识别等" ]
[ "龙翔(1973- ),男,湖北武汉人,华中科技大学博士生,湖北生物科技职业学院副教授,主要研究方向为网络空间安全、网络虚拟化、网络空间安全仿真等" ]
[ "韩兰胜(1972- ),男,湖北武汉人,华中科技大学教授、博士生导师,主要研究方向为网络安全、大数据安全、软件安全、恶意代码、移动终端安全等" ]
[ "黄炎(1988- ),男,湖北武汉人,华中科技大学博士生,主要研究方向为网络功能虚拟化、人工智能安全、知识图谱等" ]
[ "李清波(1998- ),女,江西宜春人,华中科技大学硕士生,主要研究方向为移动终端安全、隐私保护等" ]
网络出版日期:2022-03,
纸质出版日期:2022-03-25
移动端阅览
孙海丽, 龙翔, 韩兰胜, 等. 工业物联网异常检测技术综述[J]. 通信学报, 2022,43(3):196-210.
Haili SUN, Xiang LONG, Lansheng HAN, et al. Overview of anomaly detection techniques for industrial Internet of things[J]. Journal on communications, 2022, 43(3): 196-210.
孙海丽, 龙翔, 韩兰胜, 等. 工业物联网异常检测技术综述[J]. 通信学报, 2022,43(3):196-210. DOI: 10.11959/j.issn.1000-436x.2022032.
Haili SUN, Xiang LONG, Lansheng HAN, et al. Overview of anomaly detection techniques for industrial Internet of things[J]. Journal on communications, 2022, 43(3): 196-210. DOI: 10.11959/j.issn.1000-436x.2022032.
针对不同的异常检测方法的差异及应用于工业物联网(IIoT)安全防护的适用性问题,从技术原理出发,调研分析2000—2021年发表的关于网络异常检测的论文,总结了工业物联网面临的安全威胁,归纳了9种网络异常检测方法及其特点,通过纵向对比梳理了不同方法的优缺点和适用工业物联网场景。另外,对常用数据集做了统计分析和对比,并从4个方向对未来发展趋势进行展望。分析结果可以指导按应用场景选择适配方法,发现待解决关键问题并为后续研究指明方向。
In view of the differences of existing anomaly detection methods and the applicability when applied to security protection of the industrial Internet of things (IIoT)
based on technical principles
the network anomaly detection papers published from 2000 to 2021 were investigated and the security threats faced by IIoT were summarized.Then
network anomaly detection methods were classified into 9 classes and the characteristics of each class was studied.Through longitudinal comparison
the merits and shortcomings of different methods and their applicability to IIoT scenarios were sorted out.In addition
statistical analysis and comparison of common data sets were made
and the development trend in the future was forecasted from 4 directions.The analysis results can guide the selection of adaptive methods according to application scenarios
identify key problems to be solved
and point out the direction for subsequent research.
DAUGHERTY P , BERTHON B . Winning with the industrial Internet of things:how to accelerate the journey to productivity and growth [R ] . 2015 .
TANGE K , DONNO M D , FAFOUTIS X , et al . A systematic survey of industrial Internet of things security:requirements and fog computing opportunities [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 4 ): 2489 - 2520 .
SPOGNARDI A , DONNO M D , DRAGONI N , et al . Analysis of DDoS-capable IoT malwares [C ] // Proceedings of the 2017 Federated Conference on Computer Science and Information Systems,Annals of Computer Science and Information Systems . Piscataway:IEEE Press , 2017 : 807 - 816 .
ZHOU L Y , GUO H Q . Anomaly detection methods for IIoT networks [C ] // Proceedings of 2018 IEEE International Conference on Service Operations and Logistics,and Informatics . Piscataway:IEEE Press , 2018 : 214 - 219 .
LANGNER R . Stuxnet:dissecting a cyberwarfare weapon [J ] . IEEE Security & Privacy , 2011 , 9 ( 3 ): 49 - 51 .
LEE R . CRASHOVERRIDE:analysis of the threat to electric grid operations [R ] . 2017 .
BUCZAK A L , GUVEN E . A survey of data mining and machine learning methods for cyber security intrusion detection [J ] . IEEE Communications Surveys & Tutorials , 2016 , 18 ( 2 ): 1153 - 1176 .
CHANDOLA V , BANERJEE A , KUMAR V . Anomaly detection [J ] . ACM Computing Surveys , 2009 , 41 ( 3 ): 1 - 58 .
BHUYAN M H , BHATTACHARYYA D K , KALITA J K . Network anomaly detection:methods,systems and tools [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 1 ): 303 - 336 .
GARCÍA-TEODORO P , DÍAZ-VERDEJO J , MACIÁ-FERNÁNDEZ G , et al . Anomaly-based network intrusion detection:techniques,systems and challenges [J ] . Computers & Security , 2009 , 28 ( 1/2 ): 18 - 28 .
CHOUDHARI A , RAMAPRASAD H , PAUL T , et al . Stability of a cyber-physical smart grid system using cooperating invariants [C ] // Proceedings of 2013 IEEE 37th Annual Computer Software and Applications Conference . Piscataway:IEEE Press , 2013 : 760 - 769 .
PAUL T , KIMBALL J W , ZAWODNIOK M , et al . Unified invariants for cyber-physical switched system stability [J ] . IEEE Transactions on Smart Grid , 2014 , 5 ( 1 ): 112 - 120 .
PAL K , ADEPU S , GOH J . Effectiveness of association rules mining for invariants generation in cyber-physical systems [C ] // Proceedings of 2017 IEEE 18th International Symposium on High Assurance Systems Engineering . Piscataway:IEEE Press , 2017 : 124 - 127 .
MOMTAZPOUR M , ZHANG J H , RAHMAN S , et al . Analyzing invariants in cyber-physical systems using latent factor regression [C ] // Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2015 : 2009 - 2018 .
CHEN Y Q , POSKITT C M , SUN J . Learning from mutants:using code mutation to learn and monitor invariants of a cyber-physical system [C ] // Proceedings of 2018 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2018 : 648 - 660 .
FENG C , PALLETI V R , MATHUR A , et al . A systematic framework to generate invariants for anomaly detection in industrial control systems [C ] // Proceedings of 2019 Network and Distributed System Security Symposium . Reston:Internet Society , 2019 : 1 - 15 .
ASHOK A , GOVINDARASU M , WANG J H . Cyber-physical attack-resilient wide-area monitoring,protection,and control for the power grid [J ] . Proceedings of the IEEE , 2017 , 105 ( 7 ): 1389 - 1407 .
AMIN S , LITRICO X , SASTRY S S , et al . Cyber security of water SCADA systems—part II:attack detection using enhanced hydrodynamic models [J ] . IEEE Transactions on Control Systems Technology , 2013 , 21 ( 5 ): 1679 - 1693 .
LIN H , SLAGELL A , KALBARCZYK Z , et al . Semantic security analysis of SCADA networks to detect malicious control commands in power grids [C ] // Proceedings of the First ACM Workshop on Smart Energy Grid Security . New York:ACM Press , 2013 : 29 - 34 .
SRIDHAR S , GOVINDARASU M . Model-based attack detection and mitigation for automatic generation control [J ] . IEEE Transactions on Smart Grid , 2014 , 5 ( 2 ): 580 - 591 .
MO Y L , KIM T H J , BRANCIK K , et al . Cyber–physical security of a smart grid infrastructure [J ] . Proceedings of the IEEE , 2012 , 100 ( 1 ): 195 - 209 .
ETCHEVÉS M E , SETOLA R , BERNIERI G , et al . Fault diagnosis and network anomaly detection in water infrastructures [J ] . IEEE Design & Test , 2017 , 34 ( 4 ): 44 - 51 .
RAJASEGARAR S , LECKIE C , PALANISWAMI M . Anomaly detection in wireless sensor networks [J ] . IEEE Wireless Communications , 2008 , 15 ( 4 ): 34 - 40 .
RAJASEGARAR S , LECKIE C , PALANISWAMI M . Detecting data anomalies in wireless sensor networks [M ] . Singapore : World Scientific , 2009 .
费欢 , 肖甫 , 李光辉 , 等 . 基于多模态数据流的无线传感器网络异常检测方法 [J ] . 计算机学报 , 2017 , 40 ( 8 ): 1829 - 1842 .
FEI H , XIAO F , LI G H , et al . An anomaly detection method of wireless sensor network based on multi-modals data stream [J ] . Chinese Journal of Computers , 2017 , 40 ( 8 ): 1829 - 1842 .
AKIYAMA Y , KASAI Y J , IWATA M , et al . Anomaly detection of solar power generation systems based on the normalization of the amount of generated electricity [C ] // Proceedings of 2015 IEEE 29th International Conference on Advanced Information Networking and Applications . Piscataway:IEEE Press , 2015 : 294 - 301 .
NGUYEN L V , KAPINSKI J , JIN X Q , et al . Abnormal data classification using time-frequency temporal logic [C ] // Proceedings of the 20th International Conference on Hybrid Systems:Computation and Control . New York:ACM Press , 2017 : 237 - 242 .
ZHAO P S , KURIHARA M , TANAKA J , et al . Advanced correlation-based anomaly detection method for predictive maintenance [C ] // Proceedings of 2017 IEEE International Conference on Prognostics and Health Management . Piscataway:IEEE Press , 2017 : 78 - 83 .
ZANG D , LIU J H , WANG H Z . Markov chain-based feature extraction for anomaly detection in time series and its industrial application [C ] // Proceedings of 2018 Chinese Control and Decision Conference (CCDC) . Piscataway:IEEE Press , 2018 : 1059 - 1063 .
LAKHINA M , SINI J , BHUPENDRA V . Feature reduction using principal component analysis for effective anomaly–based intrusion detection on NSL-KDD [J ] . International Journal of Engineering Science and Technology , 2010 , 2 ( 6 ): 1790 - 1799 .
ZHOU Y , YU L , LIU M S , et al . Network intrusion detection based on Kernel principal component analysis and extreme learning machine [C ] // Proceedings of 2018 IEEE 18th International Conference on Communication Technology . Piscataway:IEEE Press , 2018 : 860 - 864 .
GAO J L , CHAI S C , ZHANG B H , et al . Research on network intrusion detection based on incremental extreme learning machine and adaptive principal component analysis [J ] . Energies , 2019 , 12 ( 7 ): 1223 .
KANG S H , . A feature selection algorithm to find optimal feature subsets for detecting DoS attacks [C ] // Proceedings of 2015 5th International Conference on IT Convergence and Security (ICITCS) . Piscataway:IEEE Press , 2015 : 1 - 3 .
KANG S H , KIM K J . A feature selection approach to find optimal feature subsets for the network intrusion detection system [J ] . Cluster Computing , 2016 , 19 ( 1 ): 325 - 333 .
FERRIYAN A , THAMRIN A H , TAKEDA K , et al . Feature selection using genetic algorithm to improve classification in network intrusion detection system [C ] // Proceedings of 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC) . Piscataway:IEEE Press , 2017 : 46 - 49 .
CHEN F , YE Z W , WANG C Z , et al . A feature selection approach for network intrusion detection based on tree-seed algorithm and K-nearest neighbor [C ] // Proceedings of 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems . Piscataway:IEEE Press , 2018 : 68 - 72 .
ZHANG X Y , LI J , ZHANG D J , et al . Research on feature selection for cyber attack detection in industrial Internet of things [C ] // Proceedings of the 2020 International Conference on Cyberspace Innovation of Advanced Technologies . New York:ACM Press , 2020 : 256 - 262 .
CHENG X X , LI W , XIAO Z , et al . Intrusion detection system based on QBSO-FS [C ] // Proceedings of 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE) . Piscataway:IEEE Press , 2020 : 372 - 377 .
YAN W Z , . One-class extreme learning machines for gas turbine combustor anomaly detection [C ] // Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN) . Piscataway:IEEE Press , 2016 : 2909 - 2914 .
NARAYANASWAMY B , BALAJI B , GUPTA R , et al . Data driven investigation of faults in HVAC systems with model,cluster and compare (MCC) [C ] // Proceedings of the 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings . New York:ACM Press , 2014 : 50 - 59 .
HAYES M A , CAPRETZ M A M . Contextual anomaly detection in big sensor data [C ] // Proceedings of 2014 IEEE International Congress on Big Data . Piscataway:IEEE Press , 2014 : 64 - 71 .
FU L D , ZHANG W B , TAN X B , et al . An algorithm for detection of traffic attribute exceptions based on cluster algorithm in industrial Internet of things [J ] . IEEE Access , 2021 , 9 : 53370 - 53378 .
TAMY S , BELHADAOUI H , RABBAH M A , et al . An evaluation of machine learning algorithms to detect attacks in SCADA network [C ] // Proceedings of 2019 7th Mediterranean Congress of Telecommunications (CMT) . Piscataway:IEEE Press , 2019 : 1 - 5 .
ELNOUR M , MESKIN N , KHAN K , et al . A dual-isolation- forests-based attack detection framework for industrial control systems [J ] . IEEE Access , 2020 , 8 : 36639 - 36651 .
ALSHAMMARI A , ZOHDY M A . Internet of things attacks detection and classification using tiered hidden Markov model [C ] // Proceedings of the 2019 8th International Conference on Software and Computer Applications . New York:ACM Press , 2019 : 550 - 554 .
CARINO J A , ZURITA D , PICOT A , et al . Novelty detection methodology based on multi-modal one-class support vector machine [C ] // Proceedings of 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines,Power Electronics and Drives . Piscataway:IEEE Press , 2015 : 184 - 190 .
LEE S , YOO H , SEO J , et al . Packet diversity-based anomaly detection system with OCSVM and representative model [C ] // Proceedings of 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,Physical and Social Computing (CPSCom) and IEEE Smart Data . Piscataway:IEEE Press , 2016 : 498 - 503 .
YANG H H , ZHOU Z P . A novel intrusion detection scheme using cloud grey wolf optimizer [C ] // Proceedings of 2018 37th Chinese Control Conference (CCC) . Piscataway:IEEE Press , 2018 : 8297 - 8302 .
DENG X W , JIANG P , PENG X N , et al . An intelligent outlier detection method with one class support tucker machine and genetic algorithm toward big sensor data in Internet of things [J ] . IEEE Transactions on Industrial Electronics , 2019 , 66 ( 6 ): 4672 - 4683 .
WU C W , CHEN M . Early anomaly detection in wind turbine bolts breaking problem—methodology and application [C ] // Proceedings of 2018 IEEE 3rd International Conference on Big Data Analysis . Piscataway:IEEE Press , 2018 : 402 - 406 .
WANG B , LI M X , SHU F , et al . Bayesian-based industrial Internet service abnormal detection algorithm [C ] // Proceedings of the 2nd International Conference on Information Technologies and Electrical Engineering . New York:ACM Press , 2019 : 1 - 4 .
KRAVCHIK M , SHABTAI A . Detecting cyber attacks in industrial control systems using convolutional neural networks [C ] // Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and Privacy . New York:ACM Press , 2018 : 72 - 83 .
FERRAG M A , MAGLARAS L , MOSCHOYIANNIS S , et al . Deep learning for cyber security intrusion detection:approaches,datasets,and comparative study [J ] . Journal of Information Security and Applications , 2020 ,50:102419.
PARK S H , PARK H J , CHOI Y J . RNN-based prediction for network intrusion detection [C ] // Proceedings of 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) . Piscataway:IEEE Press , 2020 : 572 - 574 .
GOH J , ADEPU S , TAN M , et al . Anomaly detection in cyber physical systems using recurrent neural networks [C ] // Proceedings of 2017 IEEE 18th International Symposium on High Assurance Systems Engineering . Piscataway:IEEE Press , 2017 : 140 - 145 .
KORONIOTIS N , MOUSTAFA N , SITNIKOVA E , et al . Towards the development of realistic botnet dataset in the Internet of things for network forensic analytics:Bot-IoT dataset [J ] . Future Generation Computer Systems , 2019 , 100 : 779 - 796 .
FREITAS D A P , KADDOUM G , CAMPELO D R , et al . Intrusion detection for cyber–physical systems using generative adversarial networks in fog environment [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 8 ): 6247 - 6256 .
ZHOU P , . Payload-based anomaly detection for industrial Internet using encoder assisted GAN [C ] // Proceedings of 2020 IEEE 6th International Conference on Computer and Communications . Piscataway:IEEE Press , 2020 : 669 - 673 .
LIU H P , ZHOU Z P , ZHANG M . Application of optimized bidirectional generative adversarial network in ICS intrusion detection [C ] // Proceedings of 2020 Chinese Control and Decision Conference (CCDC) . Piscataway:IEEE Press , 2020 : 3009 - 3014 .
IBITOYE O , SHAFIQ O , MATRAWY A . Analyzing adversarial attacks against deep learning for intrusion detection in IoT networks [C ] // Proceedings of 2019 IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
KORONIOTIS N , MOUSTAFA N , SITNIKOVA E . A new network forensic framework based on deep learning for Internet of things networks:a particle deep framework [J ] . Future Generation Computer Systems , 2020 , 110 : 91 - 106 .
ZHOU X K , HU Y Y , LIANG W , et al . Variational LSTM enhanced anomaly detection for industrial big data [J ] . IEEE Transactions on Industrial Informatics , 2020 , 17 ( 5 ): 3469 - 3477 .
KONG F H , LI J Q , JIANG B , et al . Integrated generative model for industrial anomaly detection via Bi-directional LSTM and attention mechanism [J ] . IEEE Transactions on Industrial Informatics , 2021 , PP ( 99 ): 1 .
WU D , JIANG Z K , XIE X F , et al . LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT [J ] . IEEE Transactions on Industrial Informatics , 2020 , 16 ( 8 ): 5244 - 5253 .
ROY B , CHEUNG H . A deep learning approach for intrusion detection in Internet of things using Bi-directional long short-term memory recurrent neural network [C ] // Proceedings of 2018 28th International Telecommunication Networks and Applications Conference (ITNAC) . Piscataway:IEEE Press , 2018 : 1 - 6 .
FENG C , LI T T , CHANA D . Multi-level anomaly detection in industrial control systems via package signatures and LSTM networks [C ] // Proceedings of 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) . Piscataway:IEEE Press , 2017 : 261 - 272 .
BHUVANESWARI A , SELVAKUMAR S . Anomaly detection framework for Internet of things traffic using vector convolutional deep learning approach in fog environment [J ] . Future Generation Computer Systems , 2020 , 113 : 255 - 265 .
SAHARKHIZAN M , AZMOODEH A , DEHGHANTANHA A , et al . An ensemble of deep recurrent neural networks for detecting IoT cyber attacks using network traffic [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 9 ): 8852 - 8859 .
LIAQAT S , AKHUNZADA A , SHAIKH F S , et al . SDN orchestration to combat evolving cyber threats in Internet of medical things (IoMT) [J ] . Computer Communications , 2020 , 160 : 697 - 705 .
KIM D , YANG H , CHUNG M , et al . Squeezed convolutional variational autoencoder for unsupervised anomaly detection in edge device industrial Internet of things [C ] // Proceedings of 2018 International Conference on Information and Computer Technologies (ICICT) . Piscataway:IEEE Press , 2018 : 67 - 71 .
CHANG C P , HSU W C , LIAO I . Anomaly detection for industrial control systems using k-means and convolutional autoencoder [C ] // Proceedings of 2019 International Conference on Software,Telecommunications and Computer Networks (SoftCOM) . Piscataway:IEEE Press , 2019 : 1 - 6 .
AL-HAWAWREH M , SITNIKOVA E . Industrial Internet of things based ransomware detection using stacked variational neural network [C ] // Proceedings of the 3rd International Conference on Big Data and Internet of Things . New York:ACM Press , 2019 : 126 - 130 .
LI Y Z , LI Y , ZHANG S P . Intrusion detection algorithm based on deep learning for industrial control networks [C ] // Proceedings of the 2019 2nd International Conference on Robotics,Control and Automation Engineering . New York:ACM Press , 2019 : 40 - 44 .
ABDEL-BASSET M , CHANG V , HAWASH H , et al . Deep-IFS:intrusion detection approach for industrial Internet of things traffic in fog environment [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 11 ): 7704 - 7715 .
LI X H , XU M F , VIJAYAKUMAR P , et al . Detection of low-frequency and multi-stage attacks in industrial Internet of things [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 8 ): 8820 - 8831 .
LATIF S , IDREES Z , ZOU Z , et al . DRaNN:a deep random neural network model for intrusion detection in industrial IoT [C ] // Proceedings of 2020 International Conference on UK-China Emerging Technologies (UCET) . Piscataway:IEEE Press , 2020 : 1 - 4 .
ZHOU X K , LIANG W , SHIMIZU S , et al . Siamese neural network based few-shot learning for anomaly detection in industrial cyber-physical systems [J ] . IEEE Transactions on Industrial Informatics , 2020 , 17 ( 8 ): 5790 - 5798 .
LIU Y , KUMAR N , XIONG Z H , et al . Communication-efficient federated learning for anomaly detection in industrial Internet of things [C ] // Proceedings of 2020 IEEE Global Communications Conference . Piscataway:IEEE Press , 2020 : 1 - 6 .
LIU Y , GARG S , NIE J T , et al . Deep anomaly detection for time-series data in industrial IoT:a communication-efficient on-device federated learning approach [J ] . IEEE Internet of Things Journal , 2021 , 8 ( 8 ): 6348 - 6358 .
LI B B , WU Y H , SONG J R , et al . DeepFed:federated deep learning for intrusion detection in industrial cyber–physical systems [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 8 ): 5615 - 5624 .
WANG X D , GARG S , LIN H , et al . Towards accurate anomaly detection in industrial Internet-of-things using hierarchical federated learning [J ] . IEEE Internet of Things Journal , 2021 , PP ( 99 ): 1 .
LA Q D , NGO M V , DINH T Q , et al . Enabling intelligence in fog computing to achieve energy and latency reduction [J ] . Digital Communications and Networks , 2019 , 5 ( 1 ): 3 - 9 .
CHEN Z , HU W L , WANG J J , et al . An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance [C ] // Proceedings of the Second ACM/IEEE Symposium on Edge Computing . New York:ACM Press , 2017 : 1 - 14 .
NGO M V , LUO T , CHAOUCHI H , et al . Contextual-bandit anomaly detection for IoT data in distributed hierarchical edge computing [C ] // Proceedings of 2020 IEEE 40th International Conference on Distributed Computing Systems . Piscataway:IEEE Press , 2020 : 1227 - 1230 .
PENG Y H , TAN A P , WU J J , et al . Hierarchical edge computing:a novel multi-source multi-dimensional data anomaly detection scheme for industrial Internet of things [J ] . IEEE Access , 2019 , 7 : 111257 - 111270 .
KONG D Q , LIU D S , ZHANG L , et al . Sensor anomaly detection in the industrial Internet of things based on edge computing [J ] . Turkish Journal of Electrical Engineering & Computer Sciences , 2020 , 28 ( 1 ): 331 - 346 .
NGO M V , CHAOUCHI H , LUO T , et al . Adaptive anomaly detection for IoT data in hierarchical edge computing [J ] . arXiv Preprint,arXiv:2001.03314 , 2020 .
YU X , SHAN C , BIAN J L , et al . AdaGUM:an adaptive graph updating model-based anomaly detection method for edge computing environment [J ] . Security and Communication Networks,2021 , 2021 :9954951.
MA G , GU W X , HUANG Q Y , et al . Anomaly detection for mobile devices in industrial Internet [C ] // Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers . New York:ACM Press , 2020 : 75 - 77 .
VELAMPALLI S , EBERLE W . Novel graph based anomaly detection using background knowledge [C ] // Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference(FLAIRS) . New York:ACM Press , 2017 : 538 - 543 .
LIN Q , ADEPU S , VERWER S , et al . TABOR:a graphical model-based approach for anomaly detection in industrial control systems [C ] // Proceedings of the 2018 on Asia Conference on Computer and Communications Security . New York:ACM Press , 2018 : 525 - 536 .
FORMBY D , SRINIVASAN P , LEONARD A , et al . Who’s in control of your control system? device fingerprinting for cyber-physical systems [C ] // Proceedings of 2016 Network and Distributed System Security Symposium . Reston:Internet Society , 2016 : 1 - 15 .
SHEN C , LIU C , TAN H L , et al . Hybrid-augmented device fingerprinting for intrusion detection in industrial control system networks [J ] . IEEE Wireless Communications , 2018 , 25 ( 6 ): 26 - 31 .
CHEN Y F , HU W T , ALAM M , et al . Fiden:intelligent fingerprint learning for attacker identification in the industrial Internet of things [J ] . IEEE Transactions on Industrial Informatics , 2021 , 17 ( 2 ): 882 - 890 .
AHMED C M , PRAKASH J , QADEER R , et al . Process skew:fingerprinting the process for anomaly detection in industrial control systems [C ] // Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks . New York:ACM Press , 2020 : 219 - 230 .
BENYETTOU N , BENYETTOU A , RODIN V . The cooperation of immune agents for intrusion detection system [C ] // Proceedings of the 2017 International Conference on Industrial Design Engineering . New York:ACM Press , 2017 : 133 - 137 .
PINTO R , GONCALVES G , TOVAR E , et al . Attack detection in cyber-physical production systems using the deterministic dendritic cell algorithm [C ] // Proceedings of 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) . Piscataway:IEEE Press , 2020 : 1 - 8 .
AHMAD S , LAVIN A , PURDY S , et al . Unsupervised real-time anomaly detection for streaming data [J ] . Neurocomputing , 2017 , 262 : 134 - 147 .
IGBE O , DARWISH I , SAADAWI T . Deterministic dendritic cell algorithm application to smart grid cyber-attack detection [C ] // Proceedings of 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud) . Piscataway:IEEE Press , 2017 : 199 - 204 .
MOUSTAFA N , SLAY J . UNSW-NB15:a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set) [C ] // Proceedings of 2015 Military Communications and Information Systems Conference (MilCIS) . Piscataway:IEEE Press , 2015 : 1 - 6 .
GOH J , ADEPU S , JUNEJO K N , et al . A dataset to support research in the design of secure water treatment systems [C ] // International Conference on Critical Information Infrastructures Security . Berlin:Springer , 2016 : 88 - 99 .
TAVALLAEE M , BAGHERI E , LU W , et al . A detailed analysis of the KDD Cup 99 data set [C ] // Proceedings of 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications . Piscataway:IEEE Press , 2009 : 1 - 6 .
GARCÍA S , GRILL M , STIBOREK J , et al . An empirical comparison of botnet detection methods [J ] . Computers & Security , 2014 , 45 : 100 - 123 .
BANOS O , GARCIA R , HOLGADO-TERRIZA J A , et al . mHealthDroid:a novel framework for agile development of mobile health applications [C ] // International Workshop on Ambient Assisted Living . Berlin:Springer , 2014 : 91 - 98 .
0
浏览量
2423
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构