浏览全部资源
扫码关注微信
1. 东南大学移动通信国家重点实验室,江苏 南京 210096
2. 嘉兴学院浙江省医学电子与数字健康重点实验室,浙江 嘉兴 314001
3. 北京理工大学信息与电子学院,北京 100081
4. 北京邮电大学信息与通信工程学院,北京 100876
5. 中国电子科学研究院,北京 100041
[ "张先超(1984-),男,安徽合肥人,博士,东南大学在站博士后,嘉兴学院教授,主要研究方向为无线网络资源管理、人工智能等" ]
[ "赵耀(1996-),男,河南南乐人,北京理工大学博士生,主要研究方向为智能无线通信、无线资源管理等" ]
[ "叶海军(1979-),男,安徽池州人,中国电子科学研究院研究员,主要研究方向为空基网络化信息系统体系作战、总体设计与综合集成" ]
[ "樊锐(1989-),男,安徽滁州人,博士,中国电子科学研究院高级工程师,主要研究方向为网络信息体系、人工智能" ]
网络出版日期:2022-02,
纸质出版日期:2022-02-25
移动端阅览
张先超, 赵耀, 叶海军, 等. 无线网络多用户干扰下智能发射功率控制算法[J]. 通信学报, 2022,43(2):15-21.
Xianchao ZHANG, Yao ZHAO, Haijun YE, et al. Intelligent transmit power control algorithm for the multi-user interference of wireless network[J]. Journal on communications, 2022, 43(2): 15-21.
张先超, 赵耀, 叶海军, 等. 无线网络多用户干扰下智能发射功率控制算法[J]. 通信学报, 2022,43(2):15-21. DOI: 10.11959/j.issn.1000-436x.2022028.
Xianchao ZHANG, Yao ZHAO, Haijun YE, et al. Intelligent transmit power control algorithm for the multi-user interference of wireless network[J]. Journal on communications, 2022, 43(2): 15-21. DOI: 10.11959/j.issn.1000-436x.2022028.
针对无线网络多用户互相干扰的问题,通过对发射功率进行智能控制,实现干扰管理,保证多用户通信服务质量。首先,考虑复杂动态无线信道环境,建立以无线通信系统加权数据速率最大化为目标的发射功率控制模型。其次,设计以深度强化学习“行动器-评判器”为基本架构的智能发射功率控制算法,缩短功率控制决策时间。仿真验证表明,所提算法收敛速度快,在10对收发机场景下,计算时间缩短到传统最优算法的
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </math>
。
To deal with the inter-user interference problem in wireless networks
an intelligent transmit power control scheme was proposed to manage the inter-user interference and guarantee multiple users' quality of service.Firstly
considering the complex dynamic wireless channel environment
a transmit power control model that aims to maximize the weighted sum-rate of the wireless communication system was established.Then
an intelligent power control algorithm based on the actor-critic framework in deep reinforcement learning was designed to shorten the power control decision time.Simulation results show that the proposed algorithm converges quickly
and when there are 10 pairs transceivers
the computation time consumed by the intelligent power control method is only a quarter of the time consumed by the traditional optimal algorithm.
ZHANG L , LIANG Y C , NIYATO D . 6G Visions:mobile ultra-broadband,super Internet-of-things,and artificial intelligence [J ] . China Communications , 2019 , 16 ( 8 ): 1 - 14 .
SAAD W , BENNIS M , CHEN M Z . A vision of 6G wireless systems:applications,trends,technologies,and open research problems [J ] . IEEE Network , 2020 , 34 ( 3 ): 134 - 142 .
ZHANG L , XIAO M , WU G , et al . A survey of advanced techniques for spectrum sharing in 5G networks [J ] . IEEE Wireless Communications , 2017 , 24 ( 5 ): 44 - 51 .
ASADI A , WANG Q , MANCUSO V . A survey on device-to-device communication in cellular networks [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 4 ): 1801 - 1819 .
LIU J Y , SHENG M , LIU L , et al . Interference management in ultra-dense networks:challenges and approaches [J ] . IEEE Network , 2017 , 31 ( 6 ): 70 - 77 .
SHI Q J , RAZAVIYAYN M , LUO Z Q , et al . An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [J ] . IEEE Transactions on Signal Processing , 2011 , 59 ( 9 ): 4331 - 4340 .
SHEN K M , YU W . Fractional programming for communication systems—part I:power control and beamforming [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 10 ): 2616 - 2630 .
LIU G , DENG H G , QIAN X W , et al . Joint pilot allocation and power control to enhance max-min spectral efficiency in TDD massive MIMO systems [J ] . IEEE Access , 2019 , 7 : 149191 - 149201 .
YANG R Z , LIN B , YU F R , et al . A dynamic pilot and data power allocation for TDD massive MIMO systems [C ] // Proceedings of 2018 IEEE Global Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
CHENG H V , BJÖRNSON E , LARSSON E G . Uplink pilot and data power control for single cell massive MIMO systems with MRC [C ] // Proceedings of 2015 International Symposium on Wireless Communication Systems (ISWCS) . Piscataway:IEEE Press , 2015 : 396 - 400 .
ZAPPONE A , DI-RENZO M , DEBBAH M . Wireless networks design in the era of deep learning:model-based,AI-based,or both? [J ] . IEEE Transactions on Communications , 2019 , 67 ( 10 ): 7331 - 7376 .
ABRARDO A , MORETTI M . Distributed power allocation for D2D communications underlaying/overlaying OFDMA cellular networks [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 3 ): 1466 - 1479 .
LYU J B , CHEW Y H , WONG W C . A Stackelberg game model for overlay D2D transmission with heterogeneous rate requirements [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 10 ): 8461 - 8475 .
梁应敞 , 谭俊杰 , Dusit Niyato . 智能无线通信技术研究概况 [J ] . 通信学报 , 2020 , 41 ( 7 ): 1 - 17 .
LIANG Y C , TAN J J , NIYATO D . Overview on intelligent wireless communication technology [J ] . Journal on Communications , 2020 , 41 ( 7 ): 1 - 17 .
SUN H R , CHEN X Y , SHI Q J , et al . Learning to optimize:training deep neural networks for interference management [J ] . IEEE Transactions on Signal Processing , 2018 , 66 ( 20 ): 5438 - 5453 .
NASIR Y S , GUO D N . Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 10 ): 2239 - 2250 .
ZOU Z Q , YIN R , CHEN X F , et al . Deep reinforcement learning for D2D transmission in unlicensed bands [C ] // Proceedings of 2019 IEEE/CIC International Conference on Communications Workshops in China (ICCC Workshops) . Piscataway:IEEE Press , 2019 : 42 - 47 .
ZHANG H J , YANG N , HUANGFU W , et al . Power control based on deep reinforcement learning for spectrum sharing [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 6 ): 4209 - 4219 .
KIM T , LOVE D J , CLERCKX B . Does frequent low resolution feedback outperform infrequent high resolution feedback for multiple antenna beamforming systems? [J ] . IEEE Transactions on Signal Processing , 2011 , 59 ( 4 ): 1654 - 1669 .
LILLICRAP T P , HUNT J J , PRITZEL A , et al . Continuous control with deep reinforcement learning [J ] . arXiv Preprint,arXiv:1509.02971 , 2015 .
WANG W , ZHANG F , LAU V K N . Dynamic power control for delay-aware device-to-device communications [J ] . IEEE Journal on Selected Areas in Communications , 2015 , 33 ( 1 ): 14 - 27 .
SUTTON R S , BARTO A G . Reinforcement learning:an introduction [J ] . IEEE Transactions on Neural Networks , 1998 , 9 ( 5 ): 1054 .
SCHMIDT D A , SHI C X , BERRY R A , et al . Minimum mean squared error interference alignment [C ] // Proceedings of 2009 Conference Record of the Forty-Third Asilomar Conference on Signals,Systems and Computers . Piscataway:IEEE Press , 2009 : 1106 - 1110 .
HONG M Y , RAZAVIYAYN M , LUO Z Q , et al . A unified algorithmic framework for block-structured optimization involving big data:with applications in machine learning and signal processing [J ] . IEEE Signal Processing Magazine , 2016 , 33 ( 1 ): 57 - 77 .
0
浏览量
738
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构