浏览全部资源
扫码关注微信
中国石油大学(华东)青岛软件学院、计算机科学与技术学院,山东 青岛 266580
[ "张红霞(1981- ),女,山东东营人,博士,中国石油大学(华东)副教授、硕士生导师,主要研究方向为边缘计算、区块链技术、服务计算等" ]
[ "王琪(1997- ),男,山东枣庄人,中国石油大学(华东)硕士生,主要研究方向为区块链技术、数据挖掘" ]
[ "王登岳(1996- ),男,山东聊城人,中国石油大学(华东)硕士生,主要研究方向为网络与服务计算" ]
[ "王奔(1997- ),男,山东临沂人,中国石油大学(华东)硕士生,主要研究方向为计算机视觉、多目标跟踪" ]
网络出版日期:2022-01,
纸质出版日期:2022-01-25
移动端阅览
张红霞, 王琪, 王登岳, 等. 基于深度学习的区块链蜜罐陷阱合约检测[J]. 通信学报, 2022,43(1):194-202.
Hongxia ZHANG, Qi WANG, Dengyue WANG, et al. Honeypot contract detection of blockchain based on deep learning[J]. Journal on communications, 2022, 43(1): 194-202.
张红霞, 王琪, 王登岳, 等. 基于深度学习的区块链蜜罐陷阱合约检测[J]. 通信学报, 2022,43(1):194-202. DOI: 10.11959/j.issn.1000-436x.2022011.
Hongxia ZHANG, Qi WANG, Dengyue WANG, et al. Honeypot contract detection of blockchain based on deep learning[J]. Journal on communications, 2022, 43(1): 194-202. DOI: 10.11959/j.issn.1000-436x.2022011.
针对当前检测方法准确率不高以及模型泛化性较差的问题,提出了基于 KOLSTM 深度学习模型的蜜罐陷阱合约检测方法。首先,通过分析蜜罐陷阱合约的特点,提出了关键操作码的概念,并设计了可用于选取智能合约中关键操作码的关键词提取方法;其次,在传统的LSTM模型中加入关键操作码权重机制,构建了可以同时捕获蜜罐陷阱合约中隐藏的序列特征以及关键操作码特征的 KOLSTM 模型。最后,通过实验表明,该模型具有较高的识别精确率,在二分类和多分类检测场景下的F值较LightGBM模型分别提升2.39%与19.54%。
Aiming at the problems of low accuracy of current detection methods and poor generalization of model
a honeypot contract detection method based on KOLSTM deep learning model was proposed.Firstly
by analyzing the characteristics of honeypot contract
the concept of key opcode was proposed
and a keyword extraction method which could be used to select the key opcode in smart contract was designed.Secondly
by adding the key opcode weight mechanism to the traditional LSTM model
a KOLSTM model which could simultaneously capture the sequence features and key opcode features hidden in the honeypot contract was constructed.Finally
the experimental results show that the model had a high recognition accuracy.Compared with the existing methods
the F-score is improved by 2.39% and 19.54% respectively in the two classification and multi-classification detection scenes.
ZHENG Z B , XIE S A , DAI H N , et al . An overview of blockchain technology:architecture,consensus,and future trends [C ] // Proceedings of 2017 IEEE International Congress on Big Data (BigData Congress) . Piscataway:IEEE Press , 2017 : 557 - 564 .
ZHENG Z B , XIE S A , DAI H N , et al . An overview on smart contracts:challenges,advances and platforms [J ] . Future Generation Computer Systems , 2020 , 105 : 475 - 491 .
TORRES C F , STEICHEN M . The art of the scam:demystifying honeypots in Ethereum smart contracts [C ] // Proceedings of 28th USENIX Security Symposium (USENIX Security 19) . Berkeley:USENIX Association , 2019 : 1591 - 1607 .
CAMINO R , TORRES C F , BADEN M , et al . A data science approach for detecting honeypots in Ethereum [C ] // Proceedings of 2020 IEEE International Conference on Blockchain and Cryptocurrency . Piscata-way:IEEE Press , 2020 : 1 - 9 .
CHEN W L , GUO X F , CHEN Z G , et al . Honeypot contract risk warning on Ethereum smart contracts [C ] // Proceedings of 2020 IEEE International Conference on Joint Cloud Computing . Piscataway:IEEE Press , 2020 : 1 - 8 .
曾诗钦 , 霍如 , 黄韬 , 等 . 区块链技术研究综述:原理、进展与应用 [J ] . 通信学报 , 2020 , 41 ( 1 ): 134 - 151 .
ZENG S Q , HUO R , HUANG T , et al . Survey of blockchain:principle,progress and application [J ] . Journal on Communications , 2020 , 41 ( 1 ): 134 - 151 .
CONTI M , SANDEEP KUMAR E , LAL C , et al . A survey on security and privacy issues of bitcoin [J ] . IEEE Communications Surveys &Tutorials , 2018 , 20 ( 4 ): 3416 - 3452 .
VASEK M , MOORE T . There’s no free lunch,even using bitcoin:tracking the popularity and profits of virtual currency scams [C ] // International Conference on Financial Cryptography and Data Security . Berlin:Springer , 2015 : 44 - 61 .
BARTOLETTI M , CARTA S , CIMOLI T , et al . Dissecting Ponzi schemes on Ethereum:identification,analysis,and impact [J ] . Future Generation Computer Systems , 2020 , 102 : 259 - 277 .
CHEN W L , ZHENG Z B , NGAI E C H , et al . Exploiting blockchain data to detect smart ponzi schemes on Ethereum [J ] . IEEE Access , 2019 , 7 : 37575 - 37586 .
CHEN W L , ZHENG Z B , CUI J H , et al . Detecting ponzi schemes on Ethereum:towards healthier blockchain technology [C ] // Proceedings of the 2018 World Wide Web Conference on World Wide Web . New York:ACM Press , 2018 : 409 - 1418 .
张艳梅 , 楼胤成 . 基于深度神经网络的庞氏骗局合约检测方法 [J ] . 计算机科学 , 2021 , 48 ( 1 ): 273 - 279 .
ZHANG Y M , LOU Y C . Deep neural network based ponzi scheme contract detection method [J ] . Computer Science , 2021 , 48 ( 1 ): 273 - 279 .
CHEN T Q , GUESTRIN C . XGBoost:a scalable tree boosting system [C ] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 785 - 794 .
TIKHOMIROV S , VOSKRESENSKAYA E , IVANITSKIY I , et al . SmartCheck:static analysis of Ethereum smart contracts [C ] // Proceedings of 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB) . Piscataway:IEEE Press , 2018 : 9 - 16 .
LIU C , LIU H , CAO Z , et al . ReGuard:finding reentrancy bugs in smart contracts [C ] // Proceedings of 2018 IEEE/ACM 40th International Conference on Software Engineering:Companion (ICSE-Companion) . Piscataway:IEEE Press , 2018 : 65 - 68 .
JIANG B , LIU Y , CHAN W K . ContractFuzzer:fuzzing smart contracts for vulnerability detection [C ] // Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering . New York:ACM Press , 2018 : 259 - 269 .
ZHANG Y , JIN R , ZHOU Z H . Understanding bag-of-words model:a statistical framework [J ] . International Journal of Machine Learning and Cybernetics , 2010 , 1 ( 1/2/3/4 ): 43 - 52 .
KE G , MENG Q , FINLEY T , et al . LightGBM:a highly efficient gradient boosting decision tree [J ] . Advances in Neural Information Processing Systems , 2017 , 30 : 3146 - 3154 .
LIU H , YANG Z Q , LIU C , et al . EClone:detect semantic clones in Ethereum via symbolic transaction sketch [C ] // Proceedings of ESEC/FSE 2018:Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering . New York:ACM Press , 2018 : 900 - 903 .
施聪莺 , 徐朝军 , 杨晓江 . TFIDF 算法研究综述 [J ] . 计算机应用 , 2009 , 29 ( S1 ): 167 - 170 , 180 .
SHI C Y , XU C J , YANG X J . Study of TFIDF algorithm [J ] . Journal of Computer Applications , 2009 , 29 ( S1 ): 167 - 170 , 180 .
MIKOLOV T , CHEN K , CORRADO G , et al . Efficient estimation of word representations in vector space [J ] . arXiv Preprint,arXiv:1301.3781 , 2013 .
WEI J , ZOU K . EDA:easy data augmentation techniques for boosting performance on text classification tasks [C ] // Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) . Boston:Association for Computational Linguistics , 2019 : 6382 - 6388 .
ARLOT S , CELISSE A . A survey of cross-validation procedures for model selection [J ] . Statistics Surveys , 2010 , 4 : 40 - 79 .
GAL Y , GHAHRAMANI Z . A theoretically grounded application of dropout in recurrent neural networks [J ] . arXiv Preprint,arXiv:1512.05287 , 2015 .
0
浏览量
779
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构