浏览全部资源
扫码关注微信
1. 西南交通大学信息科学与技术学院,四川 成都 611756
2. 西南交通大学综合交通大数据应用技术国家工程实验室,四川 成都 611756
3. 西南交通大学唐山研究生院,河北 唐山 063000
[ "侯进(1969− ),女,重庆人,博士,西南交通大学副教授,主要研究方向为无线通信、机器学习、深度学习、图像识别等" ]
[ "李昀喆(1996−),女,河南南阳人,西南交通大学硕士生,主要研究方向为无线电测向、深度学习" ]
[ "李天宇(1995− ),男,山东临沂人,西南交通大学硕士生,主要研究方向为无线通信、信号处理与分析、深度学习" ]
网络出版日期:2021-11,
纸质出版日期:2021-11-25
移动端阅览
侯进, 李昀喆, 李天宇. 基于去噪复数FastICA和稀疏重构的相干信号欠定DOA估计[J]. 通信学报, 2021,42(11):172-181.
Jin HOU, Yunzhe LI, Tianyu LI. Underdetermined DOA estimation of coherent signals based on denoising complex FastICA and sparse reconstruction[J]. Journal on communications, 2021, 42(11): 172-181.
侯进, 李昀喆, 李天宇. 基于去噪复数FastICA和稀疏重构的相干信号欠定DOA估计[J]. 通信学报, 2021,42(11):172-181. DOI: 10.11959/j.issn.1000-436x.2021219.
Jin HOU, Yunzhe LI, Tianyu LI. Underdetermined DOA estimation of coherent signals based on denoising complex FastICA and sparse reconstruction[J]. Journal on communications, 2021, 42(11): 172-181. DOI: 10.11959/j.issn.1000-436x.2021219.
针对现有的存在相干信号的 DOA 估计方法大多数不能用于欠定的情况,即入射信号数超过传感器数的问题,提出了一种复数快速独立成分分析算法(即复数FastICA算法)和稀疏重构算法结合的DOA估计方法。当均匀圆阵传感器数目为 M 时,该算法最多可以估计 M(M-1)入射信号的到达角。针对低信噪比情况下,复数FastICA分离效果差的问题,提出了2种圆信号与非圆信号情况下通用的去噪复数FastICA算法。仿真结果与实测数据结果表明,该算法可以进行欠定情况相干与非相干信号共存的 DOA 估计,与目前的几种算法相比,所提的DOA估计方法算法具有良好的性能。
To solve the problem that most of the existing direction of arrival(DOA) estimation methods for coherent signals could not be used in the case of under determination
where the number of incident signals exceeds the number of sensors
a DOA estimation method combining complex fast independent component analysis (FastICA) and sparse reconstruction algorithm was proposed.When the number of uniform circular array(UCA) sensors was M
the DOA of M(M-1) incident signals could be estimatedat most.To solve the problem of poor separation effect of complex FastICA in the case of low signal-to-noise ratio(SNR)
two general denoising complex FastICA algorithm were proposed
which could be used in the case of circular signal and non-circular signal.The results of simulation and measured data show that the proposed algorithm can estimate both coherent and incoherent signals in underdetermined cases.Compared with several existing algorithm
the proposed DOA estimation algorithm has good performance.
KRIM H , VIBERG M . Two decades of array signal processing research:the parametric approach [J ] . IEEE Signal Processing Magazine , 1996 , 13 ( 4 ): 67 - 94 .
ESFANDIARI M , VOROBYOV S A , ALIBANI S , et al . Non-iterative subspace-based DOA estimation in the presence of nonuniform noise [J ] . IEEE Signal Processing Letters , 2019 , 26 ( 6 ): 848 - 852 .
ZHUANG J , YANG L , NING G Y , et al . Adaptive 2-D DOA estimation using subspace fitting [C ] // Proceedings of 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP) . Piscataway:IEEE Press , 2018 : 1 - 5 .
ZAMANI A , KLIMKE M , DARTMANN G , et al . Convolutive blind source separation with independent vector analysis and beamforming [C ] // Proceedings of 2019 1st International Conference on Electrical,Control and Instrumentation Engineering (ICECIE) . Piscataway:IEEE Press , 2019 : 1 - 6 .
JOHNSON R R , . Effect of window length in combining blind source separation and beamforming [C ] // Proceedings of 2017 Third International Conference on Sensing,Signal Processing and Security (ICSSS) . Piscataway:IEEE Press , 2017 : 447 - 449 .
TRINH-HOANG M , MA W K , PESAVENTO M . A partial relaxation DOA estimator based on orthogonal matching pursuit [C ] // Proceedings of ICASSP 2020 - 2020 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2020 : 4806 - 4810 .
MALIOUTOV D , CETIN M , WILLSKY A S . A sparse signal reconstruction perspective for source localization with sensor arrays [J ] . IEEE Transactions on Signal Processing , 2005 , 53 ( 8 ): 3010 - 3022 .
SOUBIES E , CHINATTO A , LARZABAL P , et al . Direction-of-arrival estimation through exact continuous ℓ2,0-norm relaxation [J ] . IEEE Signal Processing Letters , 2021 , 28 : 16 - 20 .
HU N , SUN B , WANG J J , et al . Covariance-based DOA estimation for wideband signals using joint sparse Bayesian learning [C ] // Proceedings of 2017 IEEE International Conference on Signal Processing,Communications and Computing (ICSPCC) . Piscataway:IEEE Press , 2017 : 1 - 5 .
HUANG M , HUANG L . Sparse recovery assisted doa estimation utilizing sparse Bayesian learning [C ] // Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2018 : 3469 - 3473 .
YANG J J , GUO Y , YANG Z Y , et al . Under-determined convolutive blind source separation combining density-based clustering and sparse reconstruction in time-frequency domain [J ] . IEEE Transactions on Circuits and Systems I:Regular Papers , 2019 , 66 ( 8 ): 3015 - 3027 .
BAZZI A , SLOCK D T M , MEILHAC L . Detection of the number of superimposed signals using modified MDL criterion:a random matrix approach [C ] // Proceedings of 2016 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2016 : 4593 - 4597 .
BINGHAM E , HYVÄRINEN A , . A fast fixed-point algorithm for independent component analysis of complex valued signals [J ] . International Journal of Neural Systems , 2000 , 10 ( 1 ): 1 - 8 .
ZHANG Y , KASSAM S A . Optimum nonlinearity and approximation in complex FastICA [C ] // Proceedings of 2012 46th Annual Conference on Information Sciences and Systems (CISS) . Piscataway:IEEE Press , 2012 : 1 - 6 .
NOVEY M , ADALI T . On extending the complex FastICA algorithm to noncircular sources [J ] . IEEE Transactions on Signal Processing , 2008 , 56 ( 5 ): 2148 - 2154 .
BEN-TAL A , NEMIROVSKI A . Lectures on modern convex optimization [M ] . Berlin : Springer , 2001 .
LOBO M S , VANDENBERGHE L , BOYD S , et al . Applications of second-order cone programming [J ] . Linear Algebra and Its Applications , 1998 , 284 ( 1/2/3 ): 193 - 228 .
CHEN J , HUO X M . Theoretical results on sparse representations of multiple-measurement vectors [J ] . IEEE Transactions on Signal Processing , 2006 , 54 ( 12 ): 4634 - 4643 .
YANG Y C , NAGARAJAIAH S . Blind identification of damage in time-varying systems using independent component analysis with wavelet transform [J ] . Mechanical Systems and Signal Processing , 2014 , 47 ( 1/2 ): 3 - 20 .
0
浏览量
621
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构