浏览全部资源
扫码关注微信
1. 北京邮电大学先进信息网络北京实验室,北京 100876
2. 北京邮电大学网络体系构建与融合北京市重点实验室,北京 100876
[ "刘传宏(1998− ),男,安徽池州人,北京邮电大学博士生,主要研究方向为深度学习、语义通信、资源分配等" ]
[ "郭彩丽(1977− ),女,山西太原人,博士,北京邮电大学教授、博士生导师,主要研究方向为语义通信、无线移动通信技术、认知无线电、信号检测与估值、车联网、可见光通信、视觉智能计算、社交跨媒体数据挖掘与分析等" ]
[ "杨洋(1991− ),男,湖南娄底人,博士,北京邮电大学讲师,主要研究方向为可见光通信、室内定位技术、车联网技术、语义通信技术等" ]
[ "冯春燕(1963− ),女,北京人,博士,北京邮电大学教授、博士生导师,主要研究方向为无线通信信息传输与处理、宽带通信网络理论与技术、社交网络分析和信息检索、电信大数据分析与挖掘等" ]
[ "孙启政(1997− ),女,河南安阳人,北京邮电大学博士生,主要研究方向为语义通信、视觉内容理解、深度学习算法等" ]
[ "陈九九(1994− ),男,湖南平江人,北京邮电大学博士生,主要研究方向为车联网资源分配、语义通信、强化学习算法等" ]
网络出版日期:2021-11,
纸质出版日期:2021-11-25
移动端阅览
刘传宏, 郭彩丽, 杨洋, 等. 人工智能物联网中面向智能任务的语义通信方法[J]. 通信学报, 2021,42(11):97-108.
Chuanhong LIU, Caili GUO, Yang YANG, et al. Intelligent task-oriented semantic communication method in artificial intelligence of things[J]. Journal on communications, 2021, 42(11): 97-108.
刘传宏, 郭彩丽, 杨洋, 等. 人工智能物联网中面向智能任务的语义通信方法[J]. 通信学报, 2021,42(11):97-108. DOI: 10.11959/j.issn.1000-436x.2021214.
Chuanhong LIU, Caili GUO, Yang YANG, et al. Intelligent task-oriented semantic communication method in artificial intelligence of things[J]. Journal on communications, 2021, 42(11): 97-108. DOI: 10.11959/j.issn.1000-436x.2021214.
随着物联网(IoT)和人工智能(AI)技术的融合发展,传统的数据集中式云计算处理方式难以有效去除数据中大量的冗余信息,给人工智能物联网(AIoT)中智能任务低时延、高精度的需求带来挑战。针对这一挑战,基于深度学习方法提出了AIoT中面向智能任务的语义通信方法。针对图像分类任务,在IoT设备上利用卷积神经网络(CNN)提取图像的特征图;从语义概念出发,将语义概念和特征图进行关联,提取语义关系;基于语义关系实现语义压缩,减小网络传输的压力,降低智能任务的处理时延。实验和仿真结果表明,对比传统通信方案,所提方法的复杂度仅约为传统方案的0.8%,同时具有更高的分类任务性能;对比特征图全部传输的方案,所提方法传输时延降低了80%,大大提升了有效分类准确率。
With the integration and development of Internet of things (IoT) and artificial intelligence (AI) technologies
traditional data centralized cloud computing processing methods are difficult to effectively remove a large amount of redundant information in data
which brings challenges to the low-latency and high-precision requirements of intelligent tasks in the artificial intelligence of things (AIoT).In response to this challenge
a semantic communication method oriented to intelligent tasks in AIoT was proposed based on the deep learning method.For image classification tasks
convolutional neural networks (CNN) were used on IoT devices to extract image feature maps.Starting from semantic concepts
semantic concepts and feature maps were associated to extract semantic relationships.Based on the semantic relationships
semantic compression was implemented to reduce the pressure of network transmission and the processing delay of intelligent tasks.Experimental and simulation results show that
compared with traditional communication scheme
the proposed method is only about 0.8% of the traditional scheme
and at the same time it has higher classification task performance.Compared with the scheme that all feature maps are transmitted
the transmission delay of the proposed method is reduced by 80% and the effective accuracy of image classification task is greatly improved.
AL-FUQAHA A , GUIZANI M , MOHAMMADI M , et al . Internet of things:a survey on enabling technologies,protocols,and applications [J ] . IEEE Communications Surveys & Tutorials , 2015 , 17 ( 4 ): 2347 - 2376 .
QIU T , CHEN N , LI K Q , et al . How can heterogeneous Internet of Things build our future:a survey [J ] . IEEE Communications Surveys& Tutorials , 2018 , 20 ( 3 ): 2011 - 2027 .
杨毅宇 , 周威 , 赵尚儒 , 等 . 物联网安全研究综述:威胁、检测与防御 [J ] . 通信学报 , 2021 , 42 ( 8 ): 188 - 205 .
YANG Y Y , ZHOU W , ZHAO S R , et al . Survey of IoT security research:threats,detection and defense [J ] . Journal on Communications , 2021 , 42 ( 8 ): 188 - 205 .
ÖZYıLMAZ K R , YURDAKUL A . IoT blockchain integration [C ] // Security Analytics for the Internet of Everything . Florida:CRC Press , 2020 : 29 - 54 .
KE R M , ZHUANG Y F , PU Z Y , et al . A smart,efficient,and reliable parking surveillance system with edge artificial intelligence on IoT devices [J ] . IEEE Transactions on Intelligent Transportation Systems , 2021 , 22 ( 8 ): 4962 - 4974 .
孟倩 , 马建峰 , 陈克非 , 等 . 基于云计算平台的物联网加密数据比较方案 [J ] . 通信学报 , 2018 , 39 ( 4 ): 167 - 175 .
MENG Q , MA J F , CHEN K F , et al . Data comparable encryption scheme based on cloud computing in Internet of things [J ] . Journal on Communications , 2018 , 39 ( 4 ): 167 - 175 .
GONZÁLEZ G C , NÚÑEZ V E , GARCÍA D , et al . A review of artificial intelligence in the Internet of things [J ] . International Journal of Interactive Multimedia and Artificial Intelligence , 2019 , 5 ( 4 ): 9 .
RUDOLF C , YEHOSHUA B H . An outline of a theory of semantic information [R ] . 1952 .
陈九九 , 冯春燕 , 郭彩丽 , 等 . 车联网中视频语义驱动的资源分配算法 [J ] . 通信学报 , 2021 , 42 ( 7 ): 1 - 11 .
CHEN J J , FENG C Y , GUO C L , et al . Video semantics-driven resource allocation algorithm in Internet of vehicles [J ] . Journal on Communications , 2021 , 42 ( 7 ): 1 - 11 .
XIE H Q , QIN Z J , LI G Y , et al . Deep learning enabled semantic communication systems [J ] . IEEE Transactions on Signal Processing , 2021 , 69 : 2663 - 2675 .
XIE H Q , QIN Z J . A lite distributed semantic communication system for internet of things [J ] . IEEE Journal on Selected Areas in Communications , 2021 , 39 ( 1 ): 142 - 153 .
BOURTSOULATZE E , BURTH K D , GÜNDÜZ D , . Deep joint source-channel coding for wireless image transmission [J ] . IEEE Transactions on Cognitive Communications and Networking , 2019 , 5 ( 3 ): 567 - 579 .
LEE C H , LIN J W , CHEN P H , et al . Deep learning-constructed joint transmission-recognition for Internet of things [J ] . IEEE Access , 2019 , 7 : 76547 - 76561 .
SIMONYAN K , ZISSERMAN A . Very deep convolutional networks for large-scale image recognition [J ] . arXiv Preprint,arXiv:1409.1556 , 2014 .
SHANNON C E . A mathematical theory of communication [J ] . Bell system technical journal , 1948 , 27 ( 3 ): 379 - 423 .
CHENG P , HAO W , DAI S , et al . Club:a contrastive log-ratio upper bound of mutual information [C ] // International Conference on Machine Learning . Austria:PMLR , 2020 : 1779 - 1788 .
FARSAD N , RAO M , GOLDSMITH A . Deep learning for joint source-channel coding of text [C ] // Proceedings of 2018 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP) . Piscataway:IEEE Press , 2018 : 2326 - 2330 .
SELVARAJU R R , COGSWELL M , DAS A , et al . Grad-CAM:visual explanations from deep networks via gradient-based localization [J ] . International Journal of Computer Vision , 2020 , 128 ( 2 ): 336 - 359 .
FONG R , VEDALDI A . Net2Vec:quantifying and explaining how concepts are encoded by filters in deep neural networks [C ] // Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 8730 - 8738 .
QIAO D L , GURSOY M C . Statistical delay tradeoffs in buffer-aided two-hop wireless communication systems [J ] . IEEE Transactions on Communications , 2016 , 64 ( 11 ): 4563 - 4577 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 770 - 778 .
DENG J , DONG W , SOCHER R , et al . ImageNet:a large-scale hierarchical image database [C ] // Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2009 : 248 - 255 .
JANKOWSKI M , GÜNDÜZ D , MIKOLAJCZYK K . Joint device-edge inference over wireless links with pruning [C ] // Proceedings of 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway:IEEE Press , 2020 : 1 - 5 .
CHIOU P T , SUN Y , YOUNG G S . A complexity analysis of the JPEG image compression algorithm [C ] // Proceedings of 2017 9th Computer Science and Electronic Engineering (CEEC) . Piscataway:IEEE Press , 2017 : 65 - 70 .
0
浏览量
1853
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构