浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 移动通信教育部工程研究中心,重庆 400065
[ "王明月(1990- ),女,重庆人,重庆邮电大学博士生,主要研究方向为MIMO技术和时间反演技术" ]
[ "李方伟(1960- ),男,重庆人,博士,重庆邮电大学教授,主要研究方向为无线通信技术和移动通信安全传输技术" ]
[ "景小荣(1974- ),男,甘肃平凉人,博士,重庆邮电大学教授,主要研究方向为无线通信系统中的信号处理技术" ]
[ "张海波(1979- ),男,重庆人,博士,重庆邮电大学副教授,主要研究方向为车联网中的关键传输技术" ]
[ "熊军洲(1985- ),男,湖北武汉人,重庆邮电大学博士生,主要研究方向为时间反演技术和移动通信安全传输技术" ]
网络出版日期:2021-10,
纸质出版日期:2021-10-25
移动端阅览
王明月, 李方伟, 景小荣, 等. 大规模MIMO-TRDMA系统中的改进SOR信号检测算法[J]. 通信学报, 2021,42(10):153-161.
Mingyue WANG, Fangwei LI, Xiaorong JING, et al. Improved SOR signal detection algorithm in massive MIMO-TRDMA systems[J]. Journal on communications, 2021, 42(10): 153-161.
王明月, 李方伟, 景小荣, 等. 大规模MIMO-TRDMA系统中的改进SOR信号检测算法[J]. 通信学报, 2021,42(10):153-161. DOI: 10.11959/j.issn.1000-436x.2021205.
Mingyue WANG, Fangwei LI, Xiaorong JING, et al. Improved SOR signal detection algorithm in massive MIMO-TRDMA systems[J]. Journal on communications, 2021, 42(10): 153-161. DOI: 10.11959/j.issn.1000-436x.2021205.
在大规模多输入多输出时间反演多址(MIMO-TRDMA
multiple-input multiple-output time-reversal division multiple access)系统中,传统的线性最小均方误差(MMSE
minimum mean square error)算法可获得近似最佳的检测性能。但是,MMSE检测算法所需的矩阵求逆计算复杂度过高,无法确保信号检测的实时处理。针对这一问题,提出一种改进的连续超松弛(SOR
successive over-relaxation)信号检测算法。所提算法通过更新求解线性方程组,避免复杂的矩阵求逆计算;同时,采用最陡下降的思想提高 SOR 更新的搜索效率,以加快收敛速度和提高检测性能。仿真结果表明,所提算法能以较少的更新次数获得与传统 MMSE 算法相当的近似最佳性能,而计算复杂度数量级从O(M
3
)降低到O(M
2
)。
In the massive multi-input multi-output time-reversal division multiple access (MIMO-TRDMA) systems
the traditional linear minimum mean square error (MMSE) algorithm achieved approximately the best performance.However
the matrix inversion of the MMSE algorithm was too complicated to ensure real-time processing of signal detection.To solve this problem
an improved successive over-relaxation (SOR) signal detection optimization algorithm was proposed.The proposed algorithm reasonably upgraded the solution of linear equations to prevent the complicated calculation of matrix inversion.Meanwhile
the steepest descent idea was used to provide an effective search direction for the SOR signal detection algo
rithm
achieving a rapid convergence rate and stronger inspection performance.The simulation results show that the proposed algorithm has the similar best performance with fewer update times compared with the traditional MMSE algorithm
and the calculation complexity is reduced from O(M
3
)to O(
2
).
PRASAD K N R S V , HOSSAIN E , BHARGAVA V K . Energy efficiency in massive MIMO-based 5G networks:opportunities and challenges [J ] . IEEE Wireless Communications , 2017 , 24 ( 3 ): 86 - 94 .
BJÖRNSON E , LARSSON E G , MARZETTA T L . Massive MIMO:ten myths and one critical question [J ] . IEEE Communications Magazine , 2016 , 54 ( 2 ): 114 - 123 .
王海荣 , 董健 , 王玉辉 . 大规模MIMO系统中基于谱分离的导频去污染 [J ] . 通信学报 , 2020 , 41 ( 4 ): 197 - 205 .
WANG H R , DONG J , WANG Y H . Pilot decontamination based on spectrum separation in massive MIMO system [J ] . Journal on Communications , 2020 , 41 ( 4 ): 197 - 205 .
SHEKHAR S , HOQUE S , HOSSAIN A , et al . Performance analysis of TRDMA under multi-path rician fading channel [C ] // Proceeding of the Second International Conference on Microelectronics,Computing& Communication Systems (MCCS 2017) . Singapore:Springer , 2018 : 677 - 688 .
HAN F , LIU K J R . A multiuser TRDMA uplink system with 2D parallel interference cancellation [J ] . IEEE Transactions on Communications , 2014 , 62 ( 3 ): 1011 - 1022 .
ALBREEM M A , JUNTTI M , SHAHABUDDIN S . Massive MIMO detection techniques:a survey [J ] . IEEE Communications Surveys &Tutorials , 2019 , 21 ( 4 ): 3109 - 3132 .
景小荣 , 文晶晶 , 雷维嘉 . 基于切比雪夫-迹迭代的大规模 MIMO系统软输出信号检测 [J ] . 电子与信息学报 , 2021 , 43 ( 2 ): 372 - 379 .
JING X R , WEN J J , LEI W J . Soft output signal detection for massive MIMO systems based on Chebyshev trace iteration [J ] . Journal of Electronics & Information Technology , 2021 , 43 ( 2 ): 372 - 379 .
ZHAO S F , SHEN B , HUA Q . A comparative study of low- complexity MMSE signal detection for massive MIMO systems [J ] . KSII Transactions on Internet and Information Systems , 2018 , 12 ( 4 ): 1504 - 1526 .
KRISHNAMOORTHY A , MENON D . Matrix inversion using Cholesky decomposition [C ] // Proceedings of 2013 Signal Processing:Algorithms,Architectures,Arrangements,and Applications (SPA) . Piscataway:IEEE Press , 2013 : 70 - 72 .
CHOU C C , WU J M . Low-complexity MIMO precoder design with LDL H channel decompositi on [J ] . IEEE Transactions on Vehicular Technology , 2011 , 60 ( 5 ): 2368 - 2372 .
FANG L C , XU L , HUANG D D . Low complexity iterative MMSE-PIC detection for medium-size massive MIMO [J ] . IEEE Wireless Communications Letters , 2016 , 5 ( 1 ): 108 - 111 .
TAHIR B , SCHWARZ S , RUPP M . Low-complexity detection of uplink NOMA by exploiting properties of the propagation channel [C ] // Proceedings of 2020 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2020 : 1 - 6 .
DAI L L , GAO X Y , SU X , et al . Low-complexity soft-output signal detection based on gauss–seidel method for uplink multiuser large-scale MIMO systems [J ] . IEEE Transactions on Vehicular Technology , 2015 , 64 ( 10 ): 4839 - 4845 .
NHAT CUONG C , HONG T T , DUC KHAI L . Hardware implementation of the efficient SOR-based massive MIMO detection for uplink [C ] // Proceedings of 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF) . Piscataway:IEEE Press , 2019 : 1 - 6 .
YIN B , WU M , CAVALLARO J R , et al . Conjugate gradient-based soft-output detection and precoding in massive MIMO systems [C ] // Proceedings of 2014 IEEE Global Communications Conference . Piscataway:IEEE Press , 2014 : 3696 - 3701 .
QIN X B , YAN Z T , HE G H . A near-optimal detection scheme based on joint steepest descent and jacobi method for uplink massive MIMO systems [J ] . IEEE Communications Letters , 2016 , 20 ( 2 ): 276 - 279 .
0
浏览量
382
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构