浏览全部资源
扫码关注微信
西安电子科技大学综合业务网国家重点实验室,陕西 西安 710071
[ "邢莉娟(1982- ),女,陕西西安人,博士,西安电子科技大学副教授,主要研究方向为量子信息论、量子通信、量子纠错码理论" ]
[ "李卓(1980- ),男,陕西西安人,博士,西安电子科技大学教授,主要研究方向为量子计算、量子信息论、5G 中的编码调制技术" ]
网络出版日期:2021-10,
纸质出版日期:2021-10-25
移动端阅览
邢莉娟, 李卓. 基于分圆陪集的量子BCH码的构造[J]. 通信学报, 2021,42(10):182-188.
Lijuan XING, Zhuo LI. Construction of quantum BCH code based on cyclotomic coset[J]. Journal on communications, 2021, 42(10): 182-188.
邢莉娟, 李卓. 基于分圆陪集的量子BCH码的构造[J]. 通信学报, 2021,42(10):182-188. DOI: 10.11959/j.issn.1000-436x.2021194.
Lijuan XING, Zhuo LI. Construction of quantum BCH code based on cyclotomic coset[J]. Journal on communications, 2021, 42(10): 182-188. DOI: 10.11959/j.issn.1000-436x.2021194.
量子纠错码是克服量子消相干的主要手段,是实现量子计算机的关键技术。量子 BCH 码可以利用满足特定关系的经典码构造。首先推导了选择分圆陪集的一般性方法,给出了计算每一个分圆陪集包含元素个数的充要条件。然后给出了有限域F
q
上利用CSS构造和Steane构造来构造量子BCH码的方法。最后将该方法扩展到有限域F
q
2
上,给出了利用Hermitian构造来构造量子BCH码的方法。与已有的结果相比,所提方法具有更好的码参数和更高的最小距离下界,可以得到大量新的量子 BCH 码。此外,所提方法还可以得到一类任意域上的量子最大距离可分码。
Quantum-error-correcting code can overcome quantum decoherence efficiently
which is the key technology to realize quantum computers.A series of quantum BCH code was proposed based on classical codes.First
a general way of well-chosen cyclotomic coset was introduced.A sufficient condition was given to calculate the number of elements in cyclotomic coset.Then
a series of quantum BCH (Bose-Chaudhuri-Hocqueng
hem) code over finite field F
q
was constructed by CSS (Calderbank-Shor-Steane) construction and Steane construction.The results were extended to finite field F
q
2
with Hermitian construction.Compared with the results in literature
the range of introduced cyclotomic coset is more wide
and the new quantum BCH code has higher dimensions and better lower bounds on minimum distances.Furthermore
a family of quantum maximum distance separable (quantum MDS) code over any finite fields is constructed.
LA GUARDIA G G . On the construction of nonbinary quantum BCH codes [J ] . IEEE Transactions on Information Theory , 2014 , 60 ( 3 ): 1528 - 1535 .
QIAN J F , ZHANG L N . Improved constructions for nonbinary quantum BCH codes [J ] . International Journal of Theoretical Physics , 2017 , 56 ( 4 ): 1355 - 1363 .
MA Z , LU X , FENG K Q , et al . On non-binary quantum BCH codes [C ] // Lecture Notes in Computer Science . Berlin:Springer , 2006 : 675 - 683 .
LA GUARDIA G G . Constructions of new families of nonbinary quantum codes [J ] . Physical Review A , 2009 , 80 ( 4 ): 042331 .
MA Y N , LIANG F C , GUO L B . Some Hermitian dual containing BCH codes and new quantum codes [J ] . Applied Mathematics & Information Sciences , 2014 , 8 ( 3 ): 1231 - 1237 .
TANG N Q , LI Z , XING L J , et al . The gilbert-varshamov bound for stabilizer codes over Zm [J ] . IEEE Access , 2018 , 6 : 45699 - 45706 .
LI Z , XING L J . Classification of q-ary perfect quantum codes [J ] . IEEE Transactions on Information Theory , 2013 , 59 ( 1 ): 631 - 634 .
TANG N Q , LI Z , XING L J , et al . Quantum cyclic codes over Z m [J ] . International Journal of Theoretical Physics , 2019 , 58 ( 4 ): 1088 - 1107 .
HUFFMAN W C , PLESS V . Fundamentals of error-correcting codes [M ] . Cambridge : Cambridge University Press , 2003 .
ALY S A , KLAPPENECKER A , SARVEPALLI P K . On quantum and classical BCH codes [J ] . IEEE Transactions on Information Theory , 2007 , 53 ( 3 ): 1183 - 1188 .
LING S , LUO J Q , XING C P . Generalization of steane’s enlargement construction of quantum codes and applications [J ] . IEEE Transactions on Information Theory , 2010 , 56 ( 8 ): 4080 - 4084 .
ALY S A , KLAPPENECKER A , SARVEPALLI P K . Primitive quantum BCH codes over finite fields [C ] // Proceedings of 2006 IEEE International Symposium on Information Theory . Piscataway:IEEE Press , 2006 : 1114 - 1118 .
LI R H , XU Z B . Construction of[[n,n–4,3 ]] q quantum codes for odd prime power q [J ] . Physical Review A , 2010 , 82 ( 5 ): 052316 .
KAI X S , ZHU S X , TANG Y S . Erratum:quantum negacyclic codes [J ] . Physical Review A , 2013 , 88 ( 2 ): 029907 .
0
浏览量
395
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构