浏览全部资源
扫码关注微信
1. 大连海事大学信息科学技术学院,辽宁 大连 116026
2. 鹏程实验室网络通信研究中心,广东 深圳 518052
[ "王莹(1968− ),男,河北保定人,博士,大连海事大学教授,主要研究方向为移动通信理论、无线自组网等" ]
[ "任军(1997− ),男,安徽淮北人,大连海事大学硕士生,主要研究方向为多载波通信技术" ]
[ "史可(1998− ),女,吉林榆树人,大连海事大学硕士生,主要研究方向为多载波通信技术" ]
[ "林彬(1977− ),女,辽宁大连人,博士,大连海事大学教授,主要研究方向为无线网络优化理论" ]
网络出版日期:2021-10,
纸质出版日期:2021-10-25
移动端阅览
王莹, 任军, 史可, 等. 基于深度学习的广义频分复用系统时频双选择信道估计[J]. 通信学报, 2021,42(10):233-242.
Ying WANG, Jun REN, Ke SHI, et al. Doubly-selective channel estimation for generalized frequency division multiplexing systems based on deep learning[J]. Journal on communications, 2021, 42(10): 233-242.
王莹, 任军, 史可, 等. 基于深度学习的广义频分复用系统时频双选择信道估计[J]. 通信学报, 2021,42(10):233-242. DOI: 10.11959/j.issn.1000-436x.2021188.
Ying WANG, Jun REN, Ke SHI, et al. Doubly-selective channel estimation for generalized frequency division multiplexing systems based on deep learning[J]. Journal on communications, 2021, 42(10): 233-242. DOI: 10.11959/j.issn.1000-436x.2021188.
广义频分复用(GFDM)系统存在固有的子载波间干扰和子符号间干扰,在时频双选择信道下,会产生严重的导频污染现象,使基于导频的信道估计性能显著下降。为此,提出一种基于深度学习的 GFDM 系统信道估计框架,将离散导频位置处最小二乘信道估计值构成低分辨图像作为网络输入,利用深度残差网络恢复信道时频响应的高分辨图像,实现GFDM系统的信道估计。设计了基于深度残差网络的GFDM时频双选择信道估计算法的仿真系统,通过离线训练获得深度残差网络的最优参数。仿真结果表明,所提算法能够得到接近于最小均方误差信道估计的精度和误码率性能,并具有稳健的多普勒频移泛化能力。
There exist intrinsic inter-carrier interference and inter-subsymbol interference in generalized frequency division multiplexing (GFDM) systems.Under condition of time-frequency doubly selective channels
severe effects of pilot contamination would occur and lead to significant performance degradation for the pilot-based channel estimations.To this end
a channel estimation framework for GFDM systems based on deep learning was proposed
which took the low-resolution image constructed with the least squares estimated channel gains of the pilot symbols as input.Consequently
a high-resolution image about the channel time-frequency response was recovered through a deep residual network
and the channel estimation was achieved for GFDM systems.A simulation system for the proposed GFDM time-frequency doubly selective channel estimation algorithm based on deep residual network was developed
and the optimal parameters of the deep residual network were determined through an offline training process.Simulation results show that the proposed algorithm can achieve better performance near to minimum mean square error (MMSE) estimation in terms of estimation error and bit error rate (BER)
and has robust Doppler frequency shift generalization capability.
SHARMA S K , WANG X B . Toward massive machine type communications in ultra-dense cellular IoT networks:current issues and machine learning-assisted solutions [J ] . IEEE Communications Surveys &Tutorials , 2020 , 22 ( 1 ): 426 - 471 .
YANG H J , ZHANG K , ZHENG K , et al . Joint frame design and resource allocation for ultra-reliable and low-latency vehicular networks [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 5 ): 3607 - 3622 .
吴虹 , 刘兵 , 赵迎新 , 等 . 广义频分复用通信系统抑制干扰技术 [J ] . 上海交通大学学报 , 2017 , 51 ( 9 ): 1117 - 1123 .
WU H , LIU B , ZHAO Y X , et al . Research on interference suppression in generalized frequency division multiplex system [J ] . Journal of Shanghai Jiao Tong University , 2017 , 51 ( 9 ): 1117 - 1123 .
黄翔东 , 王惠杰 , 黎鸣诗 , 等 . GFDM 系统低复杂度最小均方误差接收机解调算法 [J ] . 北京邮电大学学报 , 2019 , 42 ( 3 ): 7 - 13 .
HUANG X D , WANG H J , LI M S , et al . Low-complexity MMSE demodulation algorithm for GFDM [J ] . Journal of Beijing University of Posts and Telecommunications , 2019 , 42 ( 3 ): 7 - 13 .
MICHAILOW N , MATTHÉ M , GASPAR I S , et al . Generalized frequency division multiplexing for 5th generation cellular networks [J ] . IEEE Transactions on Communications , 2014 , 62 ( 9 ): 3045 - 3061 .
VILAIPORNSAWAI U , JIA M . Scattered-pilot channel estimation for GFDM [C ] // Proceedings of 2014 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2014 : 1053 - 1058 .
EHSANFAR S , MATTHE M , ZHANG D , et al . Interference-free pilots insertion for MIMO-GFDM channel estimation [C ] // Proceedings of 2017 IEEE Wireless Communications and Networking Conference (WCNC) . Piscataway:IEEE Press , 2017 : 1 - 6 .
EHSANFAR S , MATTHE M , ZHANG D , et al . Theoretical analysis and CRLB evaluation for pilot-aided channel estimation in GFDM [C ] // Proceedings of 2016 IEEE Global Communications Conference (GLOBECOM) . Piscataway:IEEE Press , 2016 : 1 - 7 .
LI F , ZHENG K , ZHAO L , et al . Design and performance of a novel interference-free GFDM transceiver with dual filter [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 5 ): 4695 - 4706 .
JEONG J , PARK Y , WEON S , et al . Eigendecomposition-based GFDM for interference-free data transmission and pilot insertion for channel estimation [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 10 ): 6931 - 6943 .
桂冠 , 王禹 , 黄浩 . 基于深度学习的物理层无线通信技术:机遇与挑战 [J ] . 通信学报 , 2019 , 40 ( 2 ): 19 - 23 .
GUI G , WANG Y , HUANG H . Deep learning based physical layer wireless communication techniques:opportunities and challenges [J ] . Journal on Communications , 2019 , 40 ( 2 ): 19 - 23 .
梁应敞 , 谭俊杰 , NIYATO D . 智能无线通信技术研究概况 [J ] . 通信学报 , 2020 , 41 ( 7 ): 1 - 17 .
LIANG Y C , TAN J J , NIYATO D . Overview on intelligent wireless communication technology [J ] . Journal on Communications , 2020 , 41 ( 7 ): 1 - 17 .
YE H , LI G Y , JUANG B H . Power of deep learning for channel estimation and signal detection in OFDM systems [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 1 ): 114 - 117 .
SOLTANI M , POURAHMADI V , MIRZAEI A , et al . Deep learning-based channel estimation [J ] . IEEE Communications Letters , 2019 , 23 ( 4 ): 652 - 655 .
LI L J , CHEN H , CHANG H H , et al . Deep residual learning meets OFDM channel estimation [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 5 ): 615 - 618 .
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2016 : 770 - 778 .
HE K M , SUN J . Convolutional neural networks at constrained time cost [C ] // Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2015 : 5353 - 5360 .
ZEILER M D , KRISHNAN D , TAYLOR G W , et al . Deconvolutional networks [C ] // Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2010 : 2528 - 2535 .
0
浏览量
383
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构