浏览全部资源
扫码关注微信
1. 南京信息工程大学数字取证教育部工程研究中心,江苏 南京 210044
2. 南京信息工程大学计算机与软件学院,江苏 南京 210044
3. 湖南大学信息科学与工程学院,湖南 长沙 410082
[ "周志立(1984− ),男,湖北黄冈人,博士,南京信息工程大学教授,主要研究方向为信息隐藏、数字取证、视觉密码、数字多媒体内容安全等" ]
[ "王美民(1996− ),男,江苏盐城人,南京信息工程大学硕士生,主要研究方向为信息隐藏、数字取证" ]
[ "杨高波(1974− ),男,湖南岳阳人,博士,湖南大学教授,主要研究方向为图像/视频信号处理、多媒体通信、数字媒体内容安全等" ]
[ "朱剑宇(1996− ),男,江苏南通人,南京信息工程大学硕士生,主要研究方向为数字水印、图像处理" ]
[ "孙星明(1963− ),男,湖南湘潭人,博士,南京信息工程大学教授,主要研究方向为网络与信息安全、传感器网络、自动气象观测等" ]
网络出版日期:2021-09,
纸质出版日期:2021-09-25
移动端阅览
周志立, 王美民, 杨高波, 等. 基于轮廓自动生成的构造式图像隐写方法[J]. 通信学报, 2021,42(9):144-154.
Zhili ZHOU, Meimin WANG, Gaobo YANG, et al. Generative steganography method based on auto-generation of contours[J]. Journal on communications, 2021, 42(9): 144-154.
周志立, 王美民, 杨高波, 等. 基于轮廓自动生成的构造式图像隐写方法[J]. 通信学报, 2021,42(9):144-154. DOI: 10.11959/j.issn.1000-436x.2021174.
Zhili ZHOU, Meimin WANG, Gaobo YANG, et al. Generative steganography method based on auto-generation of contours[J]. Journal on communications, 2021, 42(9): 144-154. DOI: 10.11959/j.issn.1000-436x.2021174.
为解决现有构造式隐写方法隐藏容量小和秘密信息难以提取的问题,提出一种基于轮廓自动生成的构造式图像隐写方法,具体包括以秘密信息为驱动的轮廓线生成和从轮廓线到图像变换2个过程。首先,建立基于长短期记忆网络(LSTM)的轮廓自动生成模型,实现以秘密信息为驱动的图像轮廓线生成;然后,建立基于pix2pix模型的轮廓-图像可逆变换模型,将轮廓线变换为含密图像。该模型也支持含密图像到轮廓的逆变换,从而实现秘密信息提取。实验结果表明,所提方法不仅能有效地抵抗隐写分析攻击,还能实现较高的隐藏容量和准确的秘密信息提取,性能明显优于现有的同类构造式图像隐写方法。
To address the problems of limited hiding capacity and inaccurate information extraction in the existing generative steganography methods
a novel generative steganography method was proposed based on auto-generation of contours
which consisted of two main stages
such as the contour generation driven by secret information and the contour-to-image transformation.Firstly
the contour generation model was built based on long short term memory (LSTM) for secret information-driven auto-generation of object contours.Then
a contour-to-image reversible transformation model was constructed based on pix2pix network to obtain the stego-image
and the model also supported the reversible transformations from the stego-image to contours for secret information extraction.Experimental results demonstrate that the proposed method not only achieves high hiding capacity and accurate information extraction simultaneously
but also effectively resists the attacks by steganalysis tools.It performs much better than the state-of-the-art generative steganographic methods.
FILLER T , JUDAS J , FRIDRICH J . Minimizing additive distortion in steganography using syndrome-trellis codes [J ] . IEEE Transactions on Information Forensics and Security , 2011 , 6 ( 3 ): 920 - 935 .
LIAO X , YU Y B , LI B , et al . A new payload partition strategy in color image steganography [J ] . IEEE Transactions on Circuits and Systems for Video Technology , 2020 , 30 ( 3 ): 685 - 696 .
付章杰 , 王帆 , 孙星明 , 等 . 基于深度学习的图像隐写方法研究 [J ] . 计算机学报 , 2020 , 43 ( 9 ): 1656 - 1672 .
FU Z J , WANG F , SUN X M , et al . Research on steganography of dig-ital images based on deep learning [J ] . Chinese Journal of Computers , 2020 , 43 ( 9 ): 1656 - 1672 .
FRIDRICH J , GOLJAN M , DU R . Detecting LSB steganography in color,and gray-scale images [J ] . IEEE MultiMedia , 2001 , 8 ( 4 ): 22 - 28 .
HOLUB V , FRIDRICH J , DENEMARK T . Universal distortion function for steganography in an arbitrary domain [J ] . EURASIP Journal on Information Security , 2014 , 2014 ( 1 ): 1 - 13 .
LI B , WANG M , HUANG J W , et al . A new cost function for spatial image steganography [C ] // 2014 IEEE International Conference on Image Processing (ICIP) . Piscataway:IEEE Press , 2014 : 4206 - 4210 .
PEVNÝ T , FILLER T , BAS P . Using high-dimensional image models to perform highly undetectable steganography [C ] // International Workshop on Information Hiding . Berlin:Springer , 2010 : 161 - 177 .
HOLUB V , FRIDRICH J . Designing steganographic distortion using directional filters [C ] // 2012 IEEE International Workshop on Information Forensics and Security (WIFS) . Piscataway:IEEE Press , 2012 : 234 - 239 .
YANG J H , RUAN D Y , HUANG J W , et al . An embedding cost learning framework using GAN [J ] . IEEE Transactions on Information Forensics and Security , 2020 , 15 : 839 - 851 .
GOODFELLOW I , POUGET-ABADIE J ,, MIRZA M , et al . Generative adversarial networks [J ] . Communications of the ACM , 2020 , 63 ( 11 ): 139 - 144 .
TANG W X , LI B , BARNI M , et al . An automatic cost learning framework for image steganography using deep reinforcement learning [J ] . IEEE Transactions on Information Forensics and Security , 2021 , 16 : 952 - 967 .
DUAN X T , JIA K , LI B X , et al . Reversible image steganography scheme based on a U-Net structure [J ] . IEEE Access , 2019 , 7 : 9314 - 9323 .
FRIDRICH J , KODOVSKY J . Rich models for steganalysis of digital images [J ] . IEEE Transactions on Information Forensics and Security , 2012 , 7 ( 3 ): 868 - 882 .
XU G S , WU H Z , SHI Y Q . Structural design of convolutional neural networks for steganalysis [J ] . IEEE Signal Processing Letters , 2016 , 23 ( 5 ): 708 - 712 .
张新鹏 , 钱振兴 , 李晟 . 信息隐藏研究展望 [J ] . 应用科学学报 , 2016 , 34 ( 5 ): 475 - 489 .
ZHANG X P , QIAN Z X , LI S . Prospect of digital steganography re-search [J ] . Journal of Applied Sciences , 2016 , 34 ( 5 ): 475 - 489 .
ZHOU Z L , SUN H Y , HARIT R , et al . Coverless image steganography without embedding [C ] // International Conference on Cloud Computing and Security . Berlin:Springer , 2015 : 123 - 132 .
周志立 , 曹燚 , 孙星明 . 基于图像 bag-of-words 模型的无载体信息隐藏 [J ] . 应用科学学报 , 2016 , 34 ( 5 ): 527 - 536 .
ZHOU Z L , CAO Y , SUN X M . Coverless information hiding based on bag-of-words model of image [J ] . Journal of Applied Sciences , 2016 , 34 ( 5 ): 527 - 536 .
WU K C , WANG C M . Steganography using reversible texture synthesis [J ] . IEEE Transactions on Image Processing , 2015 , 24 ( 1 ): 130 - 139 .
QIAN Z X , ZHOU H , ZHANG W M , et al . Robust steganography using texture synthesis [M ] . Berlin : Springer , 2017 .
MEGÍAS D . Improved privacy-preserving P2P multimedia distribution based on recombined fingerprints [J ] . IEEE Transactions on Dependable and Secure Computing , 2015 , 12 ( 2 ): 179 - 189 .
LI S , ZHANG X P . Toward construction-based data hiding:from secrets to fingerprint images [J ] . IEEE Transactions on Image Processing , 2019 , 28 ( 3 ): 1482 - 1497 .
刘明明 , 张敏情 , 刘佳 , 等 . 基于生成对抗网络的无载体信息隐藏 [J ] . 应用科学学报 , 2018 , 36 ( 2 ): 371 - 382 .
LIU M M , ZHANG M Q , LIU J , et al . Coverless information hiding based on generative adversarial networks [J ] . Journal of Applied Sciences , 2018 , 36 ( 2 ): 371 - 382 .
HU D H , WANG L , JIANG W J , et al . A novel image steganography method via deep convolutional generative adversarial networks [J ] . IEEE Access , 2018 , 6 : 38303 - 38314 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
YANG Z L , GUO X Q , CHEN Z M , et al . RNN-stega:linguistic steganography based on recurrent neural networks [J ] . IEEE Transactions on Information Forensics and Security , 2019 , 14 ( 5 ): 1280 - 1295 .
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J ] . arXiv Preprint,arXiv:1411.1784 , 2014 .
ISOLA P , ZHU J Y , ZHOU T H , et al . Image-to-image translation with conditional adversarial networks [C ] // 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE Press , 2017 : 5967 - 5976 .
RONNEBERGER O , FISCHER P , BROX T . U-Net:convolutional networks for biomedical image segmentation [C ] // International Conference on Medical Image Computing and Computer-Assisted Intervention . Berlin:Springer , 2015 : 234 - 241 .
CANNY J . A computational approach to edge detection [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 1986 , 8 ( 6 ): 679 - 698 .
0
浏览量
685
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构