浏览全部资源
扫码关注微信
1. 哈尔滨工业大学(深圳)电子与信息工程学院,广东 深圳 518055
2. 哈尔滨工业大学(威海)信息科学与工程学院,山东 威海 264209
[ "杨君一(1996− ),男,湖北十堰人,哈尔滨工业大学(深圳)博士生,主要研究方向为卫星通信、光电混合路由、通信资源优化" ]
[ "李博(1983− ),男,河北廊坊人,博士,哈尔滨工业大学(威海)副教授、博士生导师,主要研究方向为无人机通信、陆海空天一体化网络等" ]
[ "张钦宇(1972− ),男,江苏扬州人,博士,哈尔滨工业大学(深圳)教授、博士生导师,主要研究方向为空间通信、无线通信、无线通信网络等" ]
网络出版日期:2021-09,
纸质出版日期:2021-09-25
移动端阅览
杨君一, 李博, 张钦宇. 基于物理层网络编码的无人机中继网络资源优化[J]. 通信学报, 2021,42(9):12-20.
Junyi YANG, Bo LI, Qinyu ZHANG. Resource optimization for UAV relay networks based on physical-layer network coding[J]. Journal on communications, 2021, 42(9): 12-20.
杨君一, 李博, 张钦宇. 基于物理层网络编码的无人机中继网络资源优化[J]. 通信学报, 2021,42(9):12-20. DOI: 10.11959/j.issn.1000-436x.2021172.
Junyi YANG, Bo LI, Qinyu ZHANG. Resource optimization for UAV relay networks based on physical-layer network coding[J]. Journal on communications, 2021, 42(9): 12-20. DOI: 10.11959/j.issn.1000-436x.2021172.
为了解决以无人机作为中继的传统双向通信网资源利用率低的问题,提出了一种基于物理层网络编码的资源优化算法。考虑无人机中继通信网的传输功率约束、无人机最大速度约束和物理层网络编码的同步性需求,建立了联合优化传输功率和无人机轨迹设计的资源分配模型以达到最小化系统中断概率的目的。通过将原非凸问题解耦为2个子问题,并基于KKT条件、拉格朗日对偶法和次梯度法提出了一种迭代算法,实现轨迹设计和最佳系统功率分配的联合优化。仿真结果表明,所提算法可以显著提高系统性能,降低通信中断的可能性。
To solve the problem of low resource utilization of the traditional two-way communication network with unmanned aerial vehicle (UAV) as relays
a resource optimization algorithm based on physical-layer network coding was proposed.Considering the transmission power constraints of the UAV relay communication network
the maximum speed constraints of the UAV and the synchronization requirements of the physical-layer network coding
a resource allocation model for joint optimization of transmission power and UAV trajectory design was formulated to minimize the system outage probability.By decoupling the original non-convex problem into two sub-problems
an iterative algorithm was proposed to realize the joint implementation of optimal trajectory design and optimal system power distribution based on the Karush-Kuhn-Tucker (KKT) conditions
Lagrangian duality method and subgradient method.Simulation results show that the proposed algorithm can significantly improve the system performance and reduce the possibility of communication interruption.
MERWADAY A , GUVENC I . UAV assisted heterogeneous networks for public safety communications [C ] // Proceedings of 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) . Piscataway:IEEE Press , 2015 : 329 - 334 .
LI B , FEI Z S , ZHANG Y . UAV communications for 5G and beyond:recent advances and future trends [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 2241 - 2263 .
ERDELJ M , NATALIZIO E , CHOWDHURY K R , et al . Help from the sky:leveraging UAVs for disaster management [J ] . IEEE Pervasive Computing , 2017 , 16 ( 1 ): 24 - 32 .
MOZAFFARI M , SAAD W , BENNIS M , et al . Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications [J ] . IEEE Transactions on Wireless Communications , 2017 , 16 ( 11 ): 7574 - 7589 .
JEONG S , SIMEONE O , KANG J . Mobile edge computing via a UAV-mounted cloudlet:optimization of bit allocation and path planning [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 3 ): 2049 - 2063 .
XI X , CAO X B , YANG P , et al . Joint user association and UAV location optimization for UAV-aided communications [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 6 ): 1688 - 1691 .
KHUWAJA A A , CHEN Y F , ZHAO N , et al . A survey of channel modeling for UAV communications [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 2804 - 2821 .
HAYAT S , YANMAZ E , MUZAFFAR R . Survey on unmanned aerial vehicle networks for civil applications:a communications viewpoint [J ] . IEEE Communications Surveys & Tutorials , 2016 , 18 ( 4 ): 2624 - 2661 .
FAN R F , CUI J N , JIN S , et al . Optimal node placement and resource allocation for UAV relaying network [J ] . IEEE Communications Letters , 2018 , 22 ( 4 ): 808 - 811 .
WU Q Q , ZENG Y , ZHANG R . Joint trajectory and communication design for multi-UAV enabled wireless networks [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 3 ): 2109 - 2121 .
JIANG M , LI Y Q , ZHANG Q , et al . Joint position and time allocation optimization of UAV enabled time allocation optimization networks [J ] . IEEE Transactions on Communications , 2019 , 67 ( 5 ): 3806 - 3816 .
XIE L F , XU J , ZHANG R . Throughput maximization for UAV-enabled wireless powered communication networks [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 1690 - 1703 .
XU J , ZENG Y , ZHANG R . UAV-enabled wireless power transfer:trajectory design and energy optimization [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 8 ): 5092 - 5106 .
SONG Q H , ZHENG F C , ZENG Y , et al . Joint beamforming and power allocation for UAV-enabled full-duplex relay [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 2 ): 1657 - 1671 .
SUN Y , XU D F , NG D W K , et al . Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems [J ] . IEEE Transactions on Communications , 2019 , 67 ( 6 ): 4281 - 4298 .
ZHANG S L , LIEW S C , LAM P P . Hot topic:physical-layer network coding [C ] // Proceedings of the 12th Annual International Conference on Mobile Computing and Networking . New York:ACM Press , 2006 : 358 - 365 .
BOYD S , VANDENBERGHE L . Convex optimization [M ] . Cambridge : Cambridge University Press , 2004 .
BERTSEKAS D P . Nonlinear programming [M ] . Belmont : Athena Scientific , 1999 .
0
浏览量
417
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构