浏览全部资源
扫码关注微信
1. 西安邮电大学通信与信息工程学院,陕西 西安 710121
2. 西安邮电大学信息通信网络与安全重点实验室,陕西 西安 710121
[ "孙长印(1963− ),男,陕西扶风人,博士,西安邮电大学副教授、硕士生导师,主要研究方向为无线异构网络干扰管理、资源分配技术等" ]
[ "刘李延(1998− ),男,陕西咸阳人,西安邮电大学硕士生,主要研究方向为毫米波通信与功率控制技术" ]
[ "江帆(1982− ),女,江苏盐城人,博士,西安邮电大学教授,主要研究方向为无线资源管理、D2D 通信技术边缘计算及缓存技术等" ]
[ "姜静(1974− ),女,陕西安康人,博士,西安邮电大学教授,主要研究方向为人工智能在无线通信中的应用与Massive MIMO技术" ]
网络出版日期:2021-09,
纸质出版日期:2021-09-25
移动端阅览
孙长印, 刘李延, 江帆, 等. 基于DNN的Sub-6 GHz辅助毫米波网络功率分配算法[J]. 通信学报, 2021,42(9):184-193.
Changyin SUN, Liyan LIU, Fan JIANG, et al. DNN-based Sub-6 GHz assisted millimeter wave network power allocation algorithm[J]. Journal on communications, 2021, 42(9): 184-193.
孙长印, 刘李延, 江帆, 等. 基于DNN的Sub-6 GHz辅助毫米波网络功率分配算法[J]. 通信学报, 2021,42(9):184-193. DOI: 10.11959/j.issn.1000-436x.2021170.
Changyin SUN, Liyan LIU, Fan JIANG, et al. DNN-based Sub-6 GHz assisted millimeter wave network power allocation algorithm[J]. Journal on communications, 2021, 42(9): 184-193. DOI: 10.11959/j.issn.1000-436x.2021170.
针对毫米波系统功率控制测量伴随的信令开销与功耗,以及迭代操作带来的复杂度问题,提出了一种使用Sub-6 GHz频段预测毫米波链路功率分配的算法。首先,分析了Sub-6 GHz频段信道信息到毫米波频段最佳功率分配的映射关系。其次,基于这种映射关系设计了一种深度神经网络(DNN)模型,通过使用加权最小均方误差(WMMSE)准则对神经网络进行了不同场景的训练,实现利用Sub-6 GHz频段对毫米波频段信道的功率分配进行预测。仿真结果表明,所提算法在仅采用 Sub-6 GHz 频段信道信息的情况下,与毫米波频段下的 WMMSE算法相比,可在耗时少于其0.1%的同时,获得其不小于97%的和速率性能。
Aimed at the problems of the signaling cost and power consumption in the power control measurement of the millimeter wave system
as well as the complexity caused by iteration operations
a millimeter wave link power allocation prediction algorithm using the Sub-6 GHz frequency band was proposed.Firstly
the mapping between the Sub-6 GHz band channel information and the optimal power allocation of the millimeter wave band was analyzed.Then
a deep neural network (DNN) model was utilized to realize this mapping function.To predict the power allocation of millimeter wave channel with Sub-6 GHz channel as input
the neural network was trained with the weighted mean square error minimization method (WMMSE) as the supervisor in different scenarios.The simulation results show that compared with the WMMSE algorithm in millimeter wave band
the proposed algorithm can obtain more than 97% of its sum-rate performance while taking less than 0.1% of the time.
RAPPAPORT T S , XING Y C , KANHERE O , et al . Wireless communications and applications above 100 GHz:opportunities and challenges for 6G and beyond [J ] . IEEE Access , 2019 , 7 : 78729 - 78757 .
YU Y W , DUTKIEWICZ E , HUANG X J , et al . Downlink resource allocation for next generation wireless networks with inter-cell interference [J ] . IEEE Transactions on Wireless Communications , 2013 , 12 ( 4 ): 1783 - 1793 .
SHI J F , CHEN M , YANG Z H , et al . Power control and performance analysis for full-duplex relay-assisted D2D communication underlaying fifth generation cellular networks [J ] . IET Communications , 2017 , 11 ( 18 ): 2729 - 2734 .
SHI Q J , RAZAVIYAYN M , LUO Z Q , et al . An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [J ] . IEEE Transactions on Signal Processing , 2011 , 59 ( 9 ): 4331 - 4340 .
BALIGH H , HONG M Y , LIAO W C , et al . Cross-layer provision of future cellular networks:a WMMSE-based approach [J ] . IEEE Signal Processing Magazine , 2014 , 31 ( 6 ): 56 - 68 .
YU W , CIOFFI J M . FDMA capacity of Gaussian multiple-access channels with ISI [J ] . IEEE Transactions on Communications , 2002 , 50 ( 1 ): 102 - 111 .
SUN H R , CHEN X Y , SHI Q J , et al . Learning to optimize:training deep neural networks for wireless resource management [C ] // Proceedings of 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) . Piscataway:IEEE Press , 2017 : 1 - 6 .
RUSEK F , PERSSON D , LAU B K , et al . Scaling up MIMO:opportunities and challenges with very large arrays [J ] . IEEE Signal Processing Magazine , 2013 , 30 ( 1 ): 40 - 60 .
NGO H Q , LARSSON E G , MARZETTA T L . Energy and spectral efficiency of very large multiuser MIMO systems [J ] . IEEE Transactions on Communications , 2013 , 61 ( 4 ): 1436 - 1449 .
文凯 , 陈永丽 , 颜飙 . 一种毫米波蜂窝网络中的D2D资源分配方案 [J ] . 计算机工程 , 2018 , 44 ( 11 ): 90 - 94 .
WEN K , CHEN Y L , YAN B . A D2D resource allocation scheme in millimeter wave cellular network [J ] . Computer Engineering , 2018 , 44 ( 11 ): 90 - 94 .
张芳 , 邹卫霞 , 杜光龙 , 等 . 60GHz 毫米波无线网络中基于归一化分阶效用函数功率控制算法 [J ] . 电子与信息学报 , 2013 , 35 ( 2 ): 291 - 296 .
ZHANG F , ZOU W X , DU G L , et al . Power control based on unitary step utility function in millimeter wave WPANs [J ] . Journal of Electronics & Information Technology , 2013 , 35 ( 2 ): 291 - 296 .
施钊 , 孙长印 , 江帆 . 毫米波网络中基于Q-Learning的阻塞感知功率分配 [J ] . 计算机工程 , 2020 , 46 ( 12 ): 185 - 192 .
SHI Z , SUN C Y , JIANG F . Block-aware power allocation based on Q-learning in millimeter-wave network [J ] . Computer Engineering , 2020 , 46 ( 12 ): 185 - 192 .
ROH W , SEOL J Y , PARK J , et al . Millimeter-wave beamforming as an enabling technology for 5G cellular communications:theoretical feasibility and prototype results [J ] . IEEE Communications Magazine , 2014 , 52 ( 2 ): 106 - 113 .
PARKVALL S , DAHLMAN E , FURUSKAR A , et al . NR:the new 5G radio access technology [J ] . IEEE Communications Standards Magazine , 2017 , 1 ( 4 ): 24 - 30 .
GONZALEZ-PRELCIC N , ALI A , VA V , et al . Millimeter-wave communication with out-of-band information [J ] . IEEE Communications Magazine , 2017 , 55 ( 12 ): 140 - 146 .
修越 , 张忠培 , 赵柏睿 , 等 . 基于K学习的Sub-6 GHz辅助毫米波信道信息获取 [J ] . 电子科技大学学报 , 2020 , 49 ( 3 ): 453 - 457 , 466 .
XIU Y , ZHANG Z P , ZHAO B R , et al . Acquisition of channel state information based on K-learning sub-6GHz assist mmWave [J ] . Journal of University of Electronic Science and Technology of China , 2020 , 49 ( 3 ): 453 - 457 , 466 .
HASHEMI M , KOKSAL C E , SHROFF N B . Out-of-band millimeter wave beamforming and communications to achieve low latency and high energy efficiency in 5G systems [J ] . IEEE Transactions on Communications , 2018 , 66 ( 2 ): 875 - 888 .
ALRABEIAH M , ALKHATEEB A . Deep learning for mmWave beam and blockage prediction using sub-6 GHz channels [J ] . IEEE Transactions on Communications , 2020 , 68 ( 9 ): 5504 - 5518 .
LI X F , ALKHATEEB A . Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems [C ] // Proceedings of 2019 53rd Asilomar Conference on Signals,Systems,and Computers . Piscataway:IEEE Press , 2019 : 800 - 805 .
LUO Z Q , ZHANG S Z . Dynamic spectrum management:complexity and duality [J ] . IEEE Journal of Selected Topics in Signal Processing , 2008 , 2 ( 1 ): 57 - 73 .
ALRABEIAH M , ALKHATEEB A . Deep learning for TDD and FDD massive MIMO:mapping channels in space and frequency [C ] // Proceedings of 2019 53rd Asilomar Conference on Signals,Systems,and Computers . Piscataway:IEEE Press , 2019 : 1465 - 1470 .
VIEIRA J , LEITINGER E , SARAJLIC M , et al . Deep convolutional neural networks for massive MIMO fingerprint-based positioning [C ] // Proceedings of 2017 IEEE 28th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications (PIMRC) . Piscataway:IEEE Press , 2017 : 1 - 6 .
HORNIK K , STINCHCOMBE M , WHITE H . Multilayer feedforward networks are universal approximators [J ] . Neural Networks , 1989 , 2 ( 5 ): 359 - 366 .
ALKHATEEB A . DeepMIMO:a generic deep learning dataset for millimeter wave and massive MIMO applications [J ] . arXiv Preprint,arXiv:1902.06435 , 2019 .
ZHANG T , ZHU K , NIYATO D . A generative adversarial learning-based approach for cell outage detection in self-organizing cellular networks [J ] . IEEE Wireless Communications Letters , 2020 , 9 ( 2 ): 171 - 174 .
徐勇军 , 胡圆 , 李国权 , 等 . 异构携能通信网络顽健资源分配算法 [J ] . 通信学报 , 2019 , 40 ( 7 ): 186 - 196 .
XU Y J , HU Y , LI G Q , et al . Robust resource allocation algorithm for heterogeneous wireless network with SWIPT [J ] . Journal on Communications , 2019 , 40 ( 7 ): 186 - 196 .
0
浏览量
496
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构