浏览全部资源
扫码关注微信
1. 南京理工大学计算机科学与工程学院,江苏 南京 210094
2. 南京理工大学后勤服务中心,江苏 南京 210094
3. 中国科学院信息工程研究所,北京 100093
[ "陈思(1987− ),女,湖北襄阳人,南京理工大学博士生,主要研究方向为大数据、隐私保护等" ]
[ "付安民(1981− ), 男,湖北咸宁人,博士,南京理工大学教授,主要研究方向为物联网安全、机器学习与隐私保护等" ]
[ "苏铓(1987− ),女,内蒙古翁牛特旗人,博士,南京理工大学副教授,主要研究方向为云安全、访问控制与权限管理等" ]
[ "孙怀江(1968− ),男,陕西西安人,博士,南京理工大学教授,主要研究方向为神经网络与机器学习等" ]
网络出版日期:2021-09,
纸质出版日期:2021-09-25
移动端阅览
陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021,42(9):54-64.
Si CHEN, Anmin FU, Mang SU, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal on communications, 2021, 42(9): 54-64.
陈思, 付安民, 苏铓, 等. 基于差分隐私的轨迹隐私保护方案[J]. 通信学报, 2021,42(9):54-64. DOI: 10.11959/j.issn.1000-436x.2021168.
Si CHEN, Anmin FU, Mang SU, et al. Trajectory privacy protection scheme based on differential privacy[J]. Journal on communications, 2021, 42(9): 54-64. DOI: 10.11959/j.issn.1000-436x.2021168.
为了解决现有采样机制和数据混淆方法容易导致公开发布的轨迹数据可用性较低和隐私保护不足的问题,提出了一种基于差分隐私的轨迹隐私保护方案。该方案通过建立新的基于时间泛化和空间分割的高效采样模型,并利用k-means聚类算法进行抽样数据处理,同时借助差分隐私保护机制对轨迹数据进行双重扰动,有效解决了具有强大背景知识的攻击者窃取用户隐私的问题。同时,为适应轨迹数据查询范围的误差边界,设计了有效的数据发布预判机制,保证了发布的轨迹数据的精度。仿真结果表明,与现有的轨迹差分隐私保护方法相比,所提方案在处理效率、隐私保护强度和数据可用性等方面具有明显的优势。
To solve the problem that the current sampling mechanism and data obfuscation method may raise insufficient data availability and privacy protection
a trajectory privacy protection scheme based on differential privacy was proposed.A new efficient sampling model based on time generalization and spatial segmentation was presented
and a k-means clustering algorithm was designed to process sampling data.By employing the differential privacy mechanism
the trajectory data was disturbed to solve the user privacy leaking problem caused by the attacker with powerful background knowledge.Simultaneously
to respond to the error boundary of the query range of pandemic
an effective prediction mechanism was designed to ensure the availability of released public track data.Simulation results demonstrate that compared with the existing trajectory differential privacy protection methods
the proposed scheme has obvious advantages in terms of processing efficiency
privacy protection intensity
and data availability.
李家印 , 郭文忠 , 李小燕 , 等 . 基于智能交通的隐私保护道路状态实时监测方案 [J ] . 通信学报 , 2020 , 41 ( 7 ): 73 - 83 .
LI J Y , GUO W Z , LI X Y , et al . Privacy-preserving real-time road conditions monitoring scheme based on intelligent traffic [J ] . Journal on Communications , 2020 , 41 ( 7 ): 73 - 83 .
陈思 , 付安民 , 柯海峰 , 等 . MCDP:基于神经网络的多集群分布式差分隐私数据发布方法 [J ] . 电子学报 , 2020 , 48 ( 12 ): 2297 - 2303 .
CHEN S , FU A M , KE H F , et al . MCDP:multi-cluster differential privacy data publishing method based on neural network [J ] . Acta Electronica Sinica , 2020 , 48 ( 12 ): 2297 - 2303 .
ZHOU C Y , FU A M , YU S , et al . Privacy-preserving federated learning in fog computing [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 11 ): 10782 - 10793 .
叶阿勇 , 孟玲玉 , 赵子文 , 等 . 基于预测和滑动窗口的轨迹差分隐私保护机制 [J ] . 通信学报 , 2020 , 41 ( 4 ): 123 - 133 .
YE A Y , MENG L Y , ZHAO Z W , et al . Trajectory differential privacy protection mechanism based on prediction and sliding window [J ] . Journal on Communications , 2020 , 41 ( 4 ): 123 - 133 .
CHEN S , FU A M , SHEN J , et al . RNN-DP:a new differential privacy scheme base on recurrent neural network for dynamic trajectory privacy protection [J ] . Journal of Network and Computer Applications , 2020 , 168 : 102736 .
WU S , WANG X L , WANG S , et al . K-anonymity for crowdsourcing database [J ] . IEEE Transactions on Knowledge and Data Engineering , 2014 , 26 ( 9 ): 2207 - 2221 .
HE X F , JIN R C , DAI H Y . Leveraging spatial diversity for privacy-aware location-based services in mobile networks [J ] . IEEE Transactions on Information Forensics and Security , 2018 , 13 ( 6 ): 1524 - 1534 .
王洁 , 王春茹 , 马建峰 , 等 . 基于位置语义和查询概率的假位置选择算法 [J ] . 通信学报 , 2020 , 41 ( 3 ): 53 - 61 .
WANG J , WANG C R , MA J F , et al . Dummy location selection algorithm based on location semantics and query probability [J ] . Journal on Communications , 2020 , 41 ( 3 ): 53 - 61 .
DWORK C , LEI J . Differential privacy and robust statistics [C ] // Proceedings of the 41st Annual ACM Symposium on Theory of Computing . New York:ACM Press , 2009 : 371 - 380 .
DWORK C , MCSHERRY F , NISSIM K , et al . Calibrating noise to sensitivity in private data analysis [C ] // Conference on Theory of Cryptography . Berlin:Springer , 2006 : 265 - 284 .
KE H F , FU A M , YU S , et al . AQ-DP:a new differential privacy scheme based on quasi-identifier classifying in big data [C ] // 2018 IEEE Global Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
WANG Y , YANG L , CHEN X Y , et al . Enhancing social network privacy with accumulated non-zero prior knowledge [J ] . Information Sciences , 2018 , 445/446 : 6 - 21 .
丁红发 , 彭长根 , 田有亮 , 等 . 基于演化博弈的隐私风险自适应访问控制模型 [J ] . 通信学报 , 2019 , 40 ( 12 ): 9 - 20 .
DING H F , PENG C G , TIAN Y L , et al . Privacy risk adaptive access control model via evolutionary game [J ] . Journal on Communications , 2019 , 40 ( 12 ): 9 - 20 .
CHEN R , FUNG B C M , DESAI B C . Differentially private trajectory data publication [J ] . arXiv Preprint,arXiv:1112.2020 , 2011 .
HE X , CORMODE G , MACHANAVAJJHALA A , et al . DPT:differentially private trajectory synthesis using hierarchical reference systems [C ] // Proceedings of the VLDB Endowment . New York:ACM Press , 2015 : 1154 - 1165 .
CAO Y , YOSHIKAWA M . Differentially private real-time data release over infinite trajectory streams [C ] // 2015 16th IEEE International Conference on Mobile Data Management . Piscataway:IEEE Press , 2015 : 68 - 73 .
GURSOY M E , LIU L , TRUEX S , et al . Utility-aware synthesis of differentially private and attack-resilient location traces [C ] // Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2018 : 196 - 211 .
DRAKONAKIS K , ILIA P , IOANNIDIS S , et al . Please forget where I was last summer:the privacy risks of public location (meta)data [C ] // Proceedings 2019 Network and Distributed System Security Symposium . VA:Internet Society , 2019 : 1 - 17 .
YANG M M , ZHU T Q , LIANG K T , et al . A blockchain-based location privacy-preserving crowdsensing system [J ] . Future Generation Computer Systems , 2019 , 94 : 408 - 418 .
HUA J Y , GAO Y , ZHONG S . Differentially private publication of general time-serial trajectory data [C ] // 2015 IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2015 : 549 - 557 .
LI M , ZHU L H , ZHANG Z J , et al . Achieving differential privacy of trajectory data publishing in participatory sensing [J ] . Information Sciences , 2017 , 400/401 : 1 - 13 .
SHAN H M , ZHANG J P , KRUGER U . Learning linear representation of space partitioning trees based on unsupervised kernel dimension reduction [J ] . IEEE Transactions on Cybernetics , 2016 , 46 ( 12 ): 3427 - 3438 .
YUAN J , ZHENG Y , XIE X , et al . Driving with knowledge from the physical world [C ] // Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2011 : 316 - 324 .
YUAN J , ZHENG Y , ZHANG C Y , et al . T-drive:driving directions based on taxi trajectories [C ] // Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems . New York:ACM Press , 2010 : 99 - 108 .
彭长根 , 丁红发 , 朱义杰 , 等 . 隐私保护的信息熵模型及其度量方法 [J ] . 软件学报 , 2016 , 27 ( 8 ): 1891 - 1903 .
PENG C G , DING H F , ZHU Y J , et al . Information entropy models and privacy metrics methods for privacy protection [J ] . Journal of Software , 2016 , 27 ( 8 ): 1891 - 1903 .
0
浏览量
791
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构