浏览全部资源
扫码关注微信
青岛科技大学信息科学技术学院,山东 青岛 266061
[ "胡强(1980- ),男,山东邹城人,青岛科技大学副教授、硕士生导师,主要研究方向为服务计算、人工智能" ]
[ "沈嘉吉(1997- ),男,上海人,青岛科技大学硕士生,主要研究方向为服务计算" ]
[ "荆广辉(1996- ),男,山东日照人,青岛科技大学硕士生,主要研究方向为文本挖掘、推荐系统" ]
[ "杜军威(1974- ),男,山东文登人,青岛科技大学教授、博士生导师,主要研究方向为软件工程、人工智能" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-25
移动端阅览
胡强, 沈嘉吉, 荆广辉, 等. 基于描述语境特征词与改进GSDMM模型的服务聚类方法[J]. 通信学报, 2021,42(8):176-187.
Qiang HU, Jiaji SHEN, Guanghui JING, et al. Service clustering method based on description context feature words and improved GSDMM model[J]. Journal on communications, 2021, 42(8): 176-187.
胡强, 沈嘉吉, 荆广辉, 等. 基于描述语境特征词与改进GSDMM模型的服务聚类方法[J]. 通信学报, 2021,42(8):176-187. DOI: 10.11959/j.issn.1000-436x.2021150.
Qiang HU, Jiaji SHEN, Guanghui JING, et al. Service clustering method based on description context feature words and improved GSDMM model[J]. Journal on communications, 2021, 42(8): 176-187. DOI: 10.11959/j.issn.1000-436x.2021150.
针对现有聚类方法中存在的服务表征向量生成质量较差问题,提出了一种面向描述语境特征词与改进GSDMM模型的服务聚类方法。首先,构建了基于语境权重的特征词提取方法,将与服务描述语境契合度高的词语抽取出,构建用于服务表征向量生成的功能特征词集合。然后,建立了带有主题分布概率修正因子的GSDMM模型,实现服务表征向量的生成以及非关键主题项概率分布修正。最后,基于修正后的服务表征向量,采用K-means++算法实现服务聚类。以Programmable Web上真实服务进行了多轮次实验,实验结果表明,采用所提方法生成的服务表征向量质量显著高于其他常用主题模型,所构建的服务聚算法性能优于其他常用算法。
To address the problem that current service clustering methods usually faced low quality of service representation vectors
a service clustering method based on description context feature words and improved GSDMM model was proposed.Firstly
a feature word extraction method based on context weight was constructed.The words that fit well with the context of service description were extracted as the set of feature words for each service.Then
an improved GSDMM model with topic distribution probability correction factor was established to generate service representation vectors and achieve distribution probability correction for non-critical topic items.Finally
K-means++ algorithm was employed to cluster Web services based on these service representation vectors.Experiments were conducted on real Web services in Web site of Programmable Web.Experiment results show that the quality of service representation vectors generated by the proposed method is higher than of other topic models.Further
the performance of our clustering method is significantly better than other service clustering methods.
NIKNEJAD N , ISMAIL W , GHANI I , et al . Understanding service-oriented architecture (SOA):a systematic literature review and directions for further investigation [J ] . Information Systems , 2020 ,91:101491.
赵晨阳 , 王俊岭 . 基于隐含上下文支持向量机的服务推荐方法 [J ] . 通信学报 , 2019 , 40 ( 9 ): 61 - 73 .
ZHAO C Y , WANG J L . Service recommendation method based on context-embedded support vector machine [J ] . Journal on Communications , 2019 , 40 ( 9 ): 61 - 73 .
HALILI F , RAMADANI E . Web services:a comparison of soap and rest services [J ] . Modern Applied Science , 2018 , 12 ( 3 ): 175 - 183 .
贾春福 , 李瑞琪 , 王雅飞 . 基于同态加密的 DBSCAN 聚类隐私保护方案 [J ] . 通信学报 , 2021 , 42 ( 2 ): 1 - 11 .
JIA C F , LI R Q , WANG Y F . Privacy protection scheme of DBSCAN clustering based on homomorphic encryption [J ] . Journal on Communications , 2021 , 42 ( 2 ): 1 - 11 .
曹步清 , 肖巧翔 , 张祥平 , 等 . 融合SOM功能聚类与DeepFM质量预测的API服务推荐方法 [J ] . 计算机学报 , 2019 , 42 ( 6 ): 1367 - 1383 .
CAO B Q , XIAO Q X , ZHANG X P , et al . An API service recommendation method via combining self-organization map-based functionality clustering and deep factorization machine-based quality prediction [J ] . Chinese Journal of Computers , 2019 , 42 ( 6 ): 1367 - 1383 .
AGARWAL N , SIKKA G , AWASTHI L K . Enhancing Web service clustering using length feature weight method for service description document vector space representation [J ] . Expert Systems with Applications , 2020 ,161:113682.
NABLI H , BEN D R , BEN A I A . Efficient cloud service discovery approach based on LDA topic modeling [J ] . Journal of Systems and Software , 2018 , 146 : 233 - 248 .
VADIVELOU G , ILAVARASAN E . Performance evaluation of semantic approaches for automatic clustering of similar Web services [C ] // 2014 World Congress on Computing and Communication Technologies . Los Alamitos:IEEE Computer Society , 2014 : 237 - 242 .
KIM S , PARK H , LEE J . Word2Vec-based latent semantic analysis (W 2 V-LSA) for topic modeling:a study on blockchain technology trend analysis [J ] . Expert Systems With Applications , 2020 ,152:113401.
CAO B Q , LIU X , LIU J X , et al . Domain-aware Mashup service clustering based on LDA topic model from multiple data sources [J ] . Information and Software Technology , 2017 , 90 : 40 - 54 .
DAS R , ZAHEER M , DYER C . Gaussian LDA for topic models with word embeddings [C ] // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing . Stroudsburg:ACL Press , 2015 : 795 - 804 .
CHENG X Q , YAN X H , LAN Y Y , et al . BTM:topic modeling over short texts [J ] . IEEE Transactions on Knowledge and Data Engineering , 2014 , 26 ( 12 ): 2928 - 2941 .
BASKARA A R , SARNO R . Web service discovery using combined bi-term topic model and WDAG similarity [C ] // 2017 11th International Conference on Information & Communication Technology and System . Piscataway:IEEE Press , 2017 : 235 - 240 .
JIANG Y C , TAO D D , LIU Y Z , et al . Cloud service recommendation based on unstructured textual information [J ] . Future Generation Computer Systems , 2019 , 97 : 387 - 396 .
AGARWAL N , SIKKA G , AWASTHI L K . Evaluation of Web service clustering using Dirichlet multinomial mixture model based approach for dimensionality reduction in service representation [J ] . Information Processing & Management , 2020 , 57 ( 4 ): 102238 .
YIN J , WANG J . A Dirichlet multinomial mixture model-based approach for short text clustering [C ] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data mining . New York:ACM Press , 2014 : 233 - 242 .
谢晓兰 , 曾兰英 , 翟青海 . 制造云服务组合中支持服务关联的 QoS感知评估模型 [J ] . 通信学报 , 2021 , 42 ( 1 ): 118 - 129 .
XIE X L , ZENG L Y , ZHAI Q H . QoS aware evaluation model supporting service correlation in manufacturing cloud service composition [J ] . Journal on Communications , 2021 , 42 ( 1 ): 118 - 129 .
LIANG T , CHEN L , YING H , et al . Co-clustering WSDL documents to bootstrap service discovery [C ] // 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications . Piscataway:IEEE Press , 2014 : 215 - 222 .
WU J , CHEN L , ZHENG Z B , et al . Clustering Web services to facilitate service discovery [J ] . Knowledge and Information Systems , 2014 , 38 ( 1 ): 207 - 229 .
张键红 , 武梦龙 , 王晶 , 等 . 云环境下安全的可验证多关键词搜索加密方案 [J ] . 通信学报 , 2021 , 42 ( 4 ): 139 - 149 .
ZHANG J H , WU M L , WANG J , et al . Secure and verifiable multi-keyword searchable encryption scheme in cloud [J ] . Journal on Communications , 2021 , 42 ( 4 ): 139 - 149 .
CAO B Q , LIU X F , RAHMAN M M , et al . Integrated content and network-based service clustering and Web APIs recommendation for mashup development [J ] . IEEE Transactions on Services Computing , 2020 , 13 ( 1 ): 99 - 113 .
LIZARRALDE I , MATEOS C , ZUNINO A , et al . Discovering Web services in social Web service repositories using deep variational autoencoders [J ] . Information Processing & Management , 2020 , 57 ( 4 ): 102231 .
ZHANG N , WANG J , HE K , et al . Mining and clustering service goals for RESTful service discovery [J ] . Knowledge and Information Systems , 2019 , 58 ( 3 ): 669 - 700 .
刘建勋 , 石敏 , 周栋 , 等 . 基于主题模型的 Mashup 标签推荐方法 [J ] . 计算机学报 , 2017 , 40 ( 2 ): 520 - 534 .
LIU J X , SHI M , ZHOU D , et al . Topic model based tag recommendation method for Mashups [J ] . Chinese Journal of Computers , 2017 , 40 ( 2 ): 520 - 534 .
石敏 , 刘建勋 , 周栋 , 等 . 基于多重关系主题模型的Web服务聚类方法 [J ] . 计算机学报 , 2019 , 42 ( 4 ): 820 - 836 .
SHI M , LIU J X , ZHOU D , et al . Multi-relational topic model-based approach for Web services clustering [J ] . Chinese Journal of Computers , 2019 , 42 ( 4 ): 820 - 836 .
SHI M , TANG Y F , LIU J X . Functional and contextual attention-based LSTM for service recommendation in Mashup creation [J ] . IEEE Transactions on Parallel and Distributed Systems , 2019 , 30 ( 5 ): 1077 - 1090 .
YE H , CAO B , CHEN J , et al . A Web services classification method based on GCN [C ] // 2019 IEEE International Conference on Parallel &Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing &Networking . Piscataway:IEEE Press , 2019 : 1107 - 1114 .
0
浏览量
515
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构