浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 陕西省区块链与安全计算重点实验室,陕西 西安 710071
3. 上海交通大学计算机学院,上海 200240
[ "马立川(1988- ),男,山东潍坊人,博士,西安电子科技大学讲师,主要研究方向为信任管理机制、隐私保护、边缘计算安全等" ]
[ "彭佳怡(1997- ),女,陕西西安人,西安电子科技大学硕士生,主要研究方向为隐私保护、安全多方计算等" ]
[ "裴庆祺(1975- ),男,广西玉林人,博士,西安电子科技大学教授,主要研究方向为认知网络、物联网与边缘计算安全、无线网络物理层安全、区块链技术、分布式协同攻防技术等" ]
[ "朱浩瑾(1980- ),男,湖北武穴人,博士,上海交通大学教授,主要研究方向为车联网安全、移动网络安全与隐私保护等" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-25
移动端阅览
马立川, 彭佳怡, 裴庆祺, 等. 高效的决策树隐私分类服务协议[J]. 通信学报, 2021,42(8):80-89.
Lichuan MA, Jiayi PENG, Qingqi PEI, et al. Efficient privacy-preserving decision tree classification protocol[J]. Journal on communications, 2021, 42(8): 80-89.
马立川, 彭佳怡, 裴庆祺, 等. 高效的决策树隐私分类服务协议[J]. 通信学报, 2021,42(8):80-89. DOI: 10.11959/j.issn.1000-436x.2021149.
Lichuan MA, Jiayi PENG, Qingqi PEI, et al. Efficient privacy-preserving decision tree classification protocol[J]. Journal on communications, 2021, 42(8): 80-89. DOI: 10.11959/j.issn.1000-436x.2021149.
为了有效解决物联网大数据场景中的决策树隐私分类服务问题,将决策树分类模型与安全多方计算技术相结合,提出了一种高效的决策树隐私分类服务协议。该协议包括:决策树分类模型混淆、基于布尔共享的隐私比较和基于不经意传输的隐私分类结果获取3个阶段。该协议能够同时保护服务提供商决策树分类模型参数及结构特征和用户需要进行分类的特征数据不被泄露。安全性分析表明,所提决策树隐私分类服务协议能够抵抗“诚实好奇”的攻击者。将所提协议用于通过公开数据集得到的决策树分类模型,以分类准确率和完成隐私分类服务的时间效率为指标与现有方法进行对比,实验结果验证了所提出隐私分类服务协议的准确性和高效性。
To provide privacy-preserving decision tree classification services in the Internet of things (IoT) big data scenario
an efficient privacy-preserving decision tree classification protocol was proposed by adopting the secure multiparty computation framework into the classification model.The entire protocol consisted of three parts: the original decision tree model mixing
the Boolean share-based privacy-preserving comparing
and the 1-out-of-n oblivious transfer-based classification result obtaining.Via the proposed protocol
the service providers could protect the parameters of their decision tree models and the users were able to derive the classification result without exposing their privately hold data.Through a concrete security analysis
the proposed protocol was proved to be secure against semi-honest adversaries.By implementing the proposed protocol on various practical decision tree models from open datasets
the classification accuracy and the average time cost for completing one privacy-preserving classification service were evaluated.After compared with existing related works
the performance superiority of the proposed protocol is demonstrated.
NESHENKO N , BOU-HARB E , CRICHIGNO J , et al . Demystifying IoT security:an exhaustive survey on IoT vulnerabilities and a first empirical look on Internet-scale IoT exploitations [J ] . IEEE Communications Surveys & Tutorials , 2019 , 21 ( 3 ): 2702 - 2733 .
CVITIĆ I , PERAKOVIĆ D , PERIŠ , et al . Novel approach for detection of IoT generated DDoS traffic [J ] . Wireless Networks , 2021 , 27 ( 3 ): 1573 - 1586 .
MOHAMMADI M , AL-FUQAHA A , SOROUR S , et al . Deep learning for IoT big data and streaming analytics:a survey [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 4 ): 2923 - 2960 .
陈立南 , 刘阳 , 马严 , 等 . 基于统计的高效决策树分组分类算法 [J ] . 通信学报 , 2014 , 35 ( Z1 ): 58 - 64 .
CHEN L N , LIU Y , MA Y , et al . Efficient-cutting packet classification algorithm based on the statistical decision tree [J ] . Journal on Communications , 2014 , 35 ( Z1 ): 58 - 64 .
LI T , LI X , ZHONG X Y , et al . Communication-efficient outsourced privacy-preserving classification service using trusted processor [J ] . Information Sciences , 2019 , 505 : 473 - 486 .
PINHEIRO A J , DE M BEZERRA J , BURGARDT C A P , et al . Identifying IoT devices and events based on packet length from encrypted traffic [J ] . Computer Communications , 2019 , 144 : 8 - 17 .
STALLINGS W . Handling of personal information and deidentified,aggregated,and pseudonymized information under the California consumer privacy act [J ] . IEEE Security & Privacy , 2020 , 18 ( 1 ): 61 - 64 .
SHASTRI S , WASSERMAN M , CHIDAMBARAM V . GDPR anti-patterns [J ] . Communications of the ACM , 2021 , 64 ( 2 ): 59 - 65 .
QI A M , SHAO G S , ZHENG W T . Assessing China's cybersecurity law [J ] . Computer Law & Security Review , 2018 , 34 ( 6 ): 1342 - 1354 .
LIANG J W , QIN Z , XIAO S , et al . Efficient and secure decision tree classification for cloud-assisted online diagnosis services [J ] . IEEE Transactions on Dependable and Secure Computing , 2021 , 18 ( 4 ): 1632 - 1644 .
BOST R , POPA R A , TU S , et al . Machine learning classification over encrypted data [C ] // Proceedings 2015 Network and Distributed System Security Symposium . VA:Internet Society , 2015 : 4324 - 4325 .
WU D J , FENG T , NAEHRIG M , et al . Privately evaluating decision trees and random forests [J ] . Proceedings on Privacy Enhancing Technologies , 2016 , 2016 ( 4 ): 335 - 355 .
TUENO A , KERSCHBAUM F , KATZENBEISSER S . Private evaluation of decision trees using sublinear cost [J ] . Proceedings on Privacy Enhancing Technologies , 2019 , 2019 ( 1 ): 266 - 286 .
刘琳岚 , 高声荣 , 舒坚 . 基于随机森林的链路质量预测 [J ] . 通信学报 , 2019 , 40 ( 4 ): 202 - 211 .
LIU L L , GAO S R , SHU J . Link quality prediction based on random forest [J ] . Journal on Communications , 2019 , 40 ( 4 ): 202 - 211 .
CHEN X , ZHU C C , YIN J . Ensemble of decision tree reveals potential miRNA-disease associations [J ] . PLoS Computational Biology , 2019 , 15 ( 7 ): 1 - 24 .
李佳 , 云晓春 , 李书豪 , 等 . 基于混合结构深度神经网络的 HTTP恶意流量检测方法 [J ] . 通信学报 , 2019 , 40 ( 1 ): 24 - 33 .
LI J , YUN X C , LI S H , et al . HTTP malicious traffic detection method based on hybrid structure deep neural network [J ] . Journal on Communications , 2019 , 40 ( 1 ): 24 - 33 .
LI F H , LI H , NIU B , et al . Privacy computing:concept,computing framework,and future development trends [J ] . Engineering , 2019 , 5 ( 6 ): 1179 - 1192 .
RAN C . Security and composition of multiparty cryptographic protocols [J ] . Journal of Cryptology , 2000 , 13 ( 1 ): 143 - 202 .
BRAKERSKI Z , GENTRY C , VAIKUNTANATHAN V . Fully homomorphic encryption without bootstrapping [J ] . ACM Transactions on Computation Theory , 2014 , 6 ( 3 ): 1 - 36 .
DAMGARD I , GEISLERR M , KROIGAARD M . Efficient and secure comparison for on-line auctions [C ] // 2007Australasian conference on information security and privacy . Berlin:Springer , 2007 : 416 - 430 .
ERKIN Z , FRANZ M , GUAJARDO J , et al . Privacy-preserving face recognition [C ] // International Symposium on Privacy Enhancing Technologies Symposium . Berlin:Springer , 2009 : 235 - 253 .
GOLDREICH O , MICALI S , WIGDERSON A . How to play any mental game,or a completeness theorem for protocols with honest majority [C ] // Proceedings of the 19th Symposium on Theory of Computing . New York:ACM Press , 2019 : 307 - 328 .
KOLESNIKOV V , SADEGHI A R , SCHNEIDER T . Improved garbled circuit building blocks and applications to auctions and computing minima [C ] // International Conference on Cryptology and Network Security . Berlin:Springer , 2009 : 1 - 20 .
BEAVER D , . Efficient multiparty protocols using circuit randomization [C ] // Annual International Cryptology Conference . Berlin:Springer , 1991 : 420 - 432 .
NAOR M , PINKAS B . Computationally secure oblivious transfer [J ] . Journal of Cryptology , 2005 , 18 ( 1 ): 1 - 35 .
ASHAROV G , LINDELL Y , SCHNEIDER T , et al . More efficient oblivious transfer and extensions for faster secure computation [C ] // 2013 ACM SIGSAC conference on Computer & communications security . New York:ACM Press , 2013 : 535 - 548 .
0
浏览量
325
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构