浏览全部资源
扫码关注微信
华中科技大学武汉光电国家研究中心,湖北 武汉 430074
[ "刘俊(1991− ),男,湖北天门人,博士,华中科技大学在站博士后,主要研究方向为基于结构光场的自由空间和光纤空分复用通信、基于轨道角动量的高维量子通信等" ]
[ "王健(1981− ),男,江苏南京人,博士,华中科技大学教授、博士生导师,主要研究方向为多维光通信、光信号处理、光场调控(轨道角动量、矢量光、结构光)、光电子器件与集成、硅基光子学等" ]
网络出版日期:2021-11,
纸质出版日期:2021-11-25
移动端阅览
刘俊, 王健. 轨道角动量光信号处理研究进展[J]. 通信学报, 2021,42(11):217-232.
Jun LIU, Jian WANG. Research progress of optical signal processing with orbital angular momentum[J]. Journal on communications, 2021, 42(11): 217-232.
刘俊, 王健. 轨道角动量光信号处理研究进展[J]. 通信学报, 2021,42(11):217-232. DOI: 10.11959/j.issn.1000-436x.2021148.
Jun LIU, Jian WANG. Research progress of optical signal processing with orbital angular momentum[J]. Journal on communications, 2021, 42(11): 217-232. DOI: 10.11959/j.issn.1000-436x.2021148.
携带轨道角动量的光束利用了光子横向空间分布,其具有空间螺旋相位波前。近年来,类比波分复用技术,轨道角动量复用技术引起了国内外的广泛关注并在高速大容量光传输方面取得了显著进展。值得注意的是,除了光传输,光处理也是光通信系统的关键技术。一个完整的轨道角动量光通信网络系统,既包括网络链路的轨道角动量复用传输,也包括网络节点处的轨道角动量信号处理。回顾了基于轨道角动量的光信号处理技术的研究进展,全面综述了不同功能的轨道角动量光信号处理技术以及不同应用场景中的轨道角动量光信号处理技术,同时对其未来发展趋势进行了分析和前景展望。轨道角动量光信号处理技术完善了基于轨道角动量的空分复用光通信系统,有望为实现高效灵活的轨道角动量信息管理和应对光通信新容量危机提供解决方案。
Light beams carrying OAM (orbital angular momentum) exploit the transverse spatial distribution of photons and have helical phase front.In recent years
similar to the WDM (wavelength-division multiplexing) technology
OAM multiplexing technology has attracted widespread interest and made remarkable progress in high-speed and large-capacity optical signal transmission.It is worth noting that
optical signal processing is also the key technology of optical communication systems in addition to optical signal transmission.A complete OAM-based optical communication network system includes both OAM multiplexing transmission along network links and OAM signal processing at network nodes.The research progress of optical signal processing with OAM were reviewed
and different optical signal processing functions with OAM and the various OAM-based optical signal processing technologies in different application scenarios were comprehensively summarized.Meanwhile
the future development trend of optical signal processing with OAM was analyzed and its prospect was discussed.The optical signal processing technologies with OAM improve the OAM-based space-division multiplexing optical communication systems
which is expected to provide solutions for realizing efficient and flexible information management of OAM and addressing the new capacity crunch of optical communications.
ESSIAMBRE R J , TKACH R W . Capacity trends and limits of optical communication networks [J ] . Proceedings of the IEEE , 2012 , 100 ( 5 ): 1035 - 1055 .
LORD A , SOPPERA A , JACQUET A . The impact of capacity growth in national telecommunications networks [J ] . Philosophical Transactions Series A,Mathematical,Physical,and Engineering Sciences , 2016 , 374 ( 2062 ): 20140431 .
WINZER P J , NEILSON D T . From scaling disparities to integrated parallelism:a decathlon for a decade [J ] . Journal of Lightwave Technology , 2017 , 35 ( 5 ): 1099 - 1115 .
KAO K C , HOCKHAM G A . Dielectric-fibre surface waveguides for optical frequencies [J ] . Proceedings of the Institution of Electrical Engineers , 1966 , 113 ( 7 ): 1151 - 1158 .
THOMPSON G H B , HOLONYAK N J . Physics of semiconductor laser devices [J ] . Physics Today , 2008 , 34 ( 4 ): 62 .
RICHARDSON D J , FINI J M , NELSON L E . Space-division multiplexing in optical fibres [J ] . Nature Photonics , 2013 , 7 ( 5 ): 354 - 362 .
BORN M , WOLF E , HECHT E . Principles of optics:electromagnetic theory of propagation,interference and diffraction of light [J ] . Physics Today , 2000 , 53 ( 10 ): 77 - 78 .
WINZER P J . Making spatial multiplexing a reality [J ] . Nature Photonics , 2014 , 8 ( 5 ): 345 - 348 .
BRACKETT C A . Dense wavelength division multiplexing networks:principles and applications [J ] . IEEE Journal on Selected Areas in Communications , 1990 , 8 ( 6 ): 948 - 964 .
TUCKER R S , EISENSTEIN G , KOROTKY S K . Optical time-division multiplexing for very high bit-rate transmission [J ] . Journal of Lightwave Technology , 1988 , 6 ( 11 ): 1737 - 1749 .
ZHOU X , YU J J . Multi-level,multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission [J ] . Journal of Lightwave Technology , 2009 , 27 ( 16 ): 3641 - 3653 .
KOIZUMI Y , TOYODA K , YOSHIDA M , et al . 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km [J ] . Optics Express , 2012 , 20 ( 11 ): 12508 - 12514 .
HIROOKA T , RUAN P , GUAN P Y , et al . Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km [J ] . Optics Express , 2012 , 20 ( 14 ): 15001 .
ZHANG J W , YU J J . Generation and transmission of high symbol rate single carrier electronically time-division multiplexing signals [J ] . IEEE Photonics Journal , 2016 , 8 ( 2 ): 1 - 6 .
ZHANG J W , YU J J , ZHU B Y , et al . WDM transmission of twelve 960 Gb/s channels based on 120-Gbaud ETDM PDM-16QAM over 1200-km TeraWave™ fiber link [C ] // Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (OFC) . Piscataway:IEEE Press , 2016 : 1 - 3 .
SANO A , MASUDA H , KOBAYASHI T , et al . Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification [J ] . Journal of Lightwave Technology , 2011 , 29 ( 4 ): 578 - 586 .
SHIEH W , ATHAUDAGE C . Coherent optical orthogonal frequency division multiplexing [J ] . Electronics Letters , 2006 , 42 ( 10 ): 587 .
TSUKAMOTO S , KATOH K , KIKUCHI K . Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing [J ] . IEEE Photonics Technology Letters , 2006 , 18 ( 10 ): 1131 - 1133 .
LY-GAGNON D S , TSUKAMOTO S , KATOH K , et al . Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation [J ] . Journal of Lightwave Technology , 2006 , 24 ( 1 ): 12 - 21 .
KIKUCHI N , SASAKI S . Highly sensitive optical multilevel transmission of arbitrary quadrature-amplitude modulation (QAM) signals with direct detection [J ] . Journal of Lightwave Technology , 2010 , 28 ( 1 ): 123 - 130 .
BEPPU S , KASAI K , YOSHIDA M , et al . 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 153 bit/s/Hz [J ] . Optics Express , 2015 , 23 ( 4 ): 4960 .
OLSSON S L I , CHO J , CHANDRASEKHAR S , et al . Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection [J ] . Optics Express , 2018 , 26 ( 4 ): 4522 - 4530 .
RICHARDSON D J , FINI J M , NELSON L E . Space-division multiplexing in optical fibres [J ] . Nature Photonics , 2013 , 7 ( 5 ): 354 - 362 .
WINZER P J . Spatial multiplexing in fiber optics:the 10X scaling of metro/core capacities [J ] . Bell Labs Technical Journal , 2014 , 19 : 22 - 30 .
WINZER P J . Making spatial multiplexing a reality [J ] . Nature Photonics , 2014 , 8 ( 5 ): 345 - 348 .
LI G F , BAI N , ZHAO N B , et al . Space-division multiplexing:the next frontier in optical communication [J ] . Advances in Optics and Photonics , 2014 , 6 ( 4 ): 413 .
MIZUNO T , TAKARA H , SANO A , et al . Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber [J ] . Journal of Lightwave Technology , 2016 , 34 ( 2 ): 582 - 592 .
ALLEN L , BEIJERSBERGEN M , SPREEUW R , et al . Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J ] . Physical Review A,Atomic,Molecular,and Optical Physics , 1992 , 45 ( 11 ): 8185 - 8189 .
FRANKE-ARNOLD S , ALLEN L , PADGETT M . Advances in optical angular momentum [J ] . Laser & Photonics Reviews , 2008 , 2 ( 4 ): 299 - 313 .
YAO A M , PADGETT M J . Orbital angular momentum:origins,behavior and applications [J ] . Advances in Optics and Photonics , 2011 , 3 ( 2 ): 161 - 204 .
PADGETT M J . Orbital angular momentum 25 years on [J ] . Optics Express , 2017 , 25 ( 10 ): 11265 - 11274 .
DHOLAKIA K , ČIŽMÁR T , . Shaping the future of manipulation [J ] . Nature Photonics , 2011 , 5 ( 6 ): 335 - 342 .
PATERSON L , MACDONALD M P , ARLT J , et al . Controlled rotation of optically trapped microscopic particles [J ] . Science , 2001 , 292 ( 5518 ): 912 - 914 .
PADGETT M , BOWMAN R . Tweezers with a twist [J ] . Nature Photonics , 2011 , 5 ( 6 ): 343 - 348 .
BERNET S , JESACHER A , FÜRHAPTER S , , et al . Quantitative imaging of complex samples by spiral phase contrast microscopy [J ] . Optics Express , 2006 , 14 ( 9 ): 3792 - 3805 .
LAVERY M P J , SPEIRITS F C , BARNETT S M , et al . Detection of a spinning object using light's orbital angular momentum [J ] . Science , 2013 , 341 ( 6145 ): 537 - 540 .
FANG L , PADGETT M J , WANG J . Sharing a common origin between the rotational and linear Doppler effects [J ] . Laser & Photonics Reviews , 2017 , 11 ( 6 ): 1700183 .
VIEIRA J , TRINES R M G M , ALVES E P , et al . Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering [J ] . Nature Communications , 2016 , 7 : 10371 .
ELIAS N M I . Photon orbital angular momentum in astronomy [J ] . Astronomy & Astrophysics , 2008 , 492 ( 3 ): 883 - 922 .
MAIR A , VAZIRI A , WEIHS G , et al . Entanglement of the orbital angular momentum states of photons [J ] . Nature , 2001 , 412 ( 6844 ): 313 - 316 .
LEACH J , JACK B , ROMERO J , et al . Quantum correlations in optical angle-orbital angular momentum variables [J ] . Science , 2010 , 329 ( 5992 ): 662 - 665 .
WILLNER A E , WANG J , HUANG H . A different angle on light communications [J ] . Science , 2012 , 337 ( 6095 ): 655 - 656 .
WILLNER A E , HUANG H , YAN Y , et al . Optical communications using orbital angular momentum beams [J ] . Advances in Optics and Photonics , 2015 , 7 ( 1 ): 66 .
WANG J . Advances in communications using optical vortices [J ] . Photonics Research , 2016 , 4 ( 5 ): B14 - B28 .
WANG J . Data information transfer using complex optical fields:a review and perspective (Invited Paper) [J ] . Chinese Optics Letters , 2017 , 15 ( 3 ): 30005 - 30009 .
LI S H , CHEN S , GAO C Q , et al . Atmospheric turbulence compensation in orbital angular momentum communications:advances and perspectives [J ] . Optics Communications , 2018 , 408 : 68 - 81 .
WANG J . Metasurfaces enabling structured light manipulation:advances and perspectives [J ] . Chinese Optics Letters , 2018 , 16 ( 5 ): 050006 .
WANG J . Twisted optical communications using orbital angular momentum [J ] . Science China Physics,Mechanics & Astronomy , 2019 , 62 ( 3 ): 34201 .
WANG J , YANG J Y , FAZAL I M , et al . Terabit free-space data transmission employing orbital angular momentum multiplexing [J ] . Nature Photonics , 2012 , 6 ( 7 ): 488 - 496 .
FAZAL I M , AHMED N , WANG J , et al . 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels [J ] . Optics Letters , 2012 , 37 ( 22 ): 4753 - 4755 .
HUANG H , XIE G D , YAN Y , et al . 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum,polarization,and wavelength [J ] . Optics Letters , 2014 , 39 ( 2 ): 197 .
LEI T , ZHANG M , LI Y R , et al . Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings [J ] . Light:Science & Applications , 2015 , 4 ( 3 ): e257 .
LIU J , WANG J . Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications [J ] . Optics Express , 2016 , 24 ( 4 ): 4258 - 4269 .
BOZINOVIC N , YUE Y , REN Y X , et al . Terabit-scale orbital angular momentum mode division multiplexing in fibers [J ] . Science , 2013 , 340 ( 6140 ): 1545 - 1548 .
GREGG P , KRISTENSEN P , RAMACHANDRAN S . Conservation of orbital angular momentum in air-core optical fibers:erratum [J ] . Optica , 2017 , 4 ( 9 ): 1115 .
LI S H , WANG J . Supermode fiber for orbital angular momentum (OAM) transmission [J ] . Optics Express , 2015 , 23 ( 14 ): 18736 - 18745 .
CHEN S , WANG J . Characterization of red/green/blue orbital angular momentum modes in conventional G.652 fiber [J ] . IEEE Journal of Quantum Electronics , 2017 , 53 ( 4 ): 1 - 14 .
CHEN S , WANG J . Theoretical analyses on orbital angular momentum modes in conventional graded-index multimode fibre [J ] . Scientific Reports , 2017 , 7 : 3990 .
HUANG H , MILIONE G , LAVERY M P J , et al . Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre [J ] . Scientific Reports , 2015 , 5 : 14931 .
WANG A D , ZHU L , LIU J , et al . Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network [J ] . Optics Express , 2015 , 23 ( 23 ): 29457 - 29466 .
LIU J , LI S M , DU J , et al . Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system [J ] . Optics Letters , 2016 , 41 ( 9 ): 1969 - 1972 .
WANG A D , ZHU L , CHEN S , et al . Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber [J ] . Optics Express , 2016 , 24 ( 11 ): 11716 - 11726 .
CHEN S , LIU J , ZHAO Y F , et al . Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber [J ] . Scientific Reports , 2016 , 6 : 38181 .
ZHU L , YANG C , XIE D Q , et al . Demonstration of km-scale orbital angular momentum multiplexing transmission using 4-level pulse- amplitude modulation signals [J ] . Optics Letters , 2017 , 42 ( 4 ): 763 .
ZHU L , WANG A D , CHEN S , et al . Orbital angular momentum mode groups multiplexing transmission over 26-km conventional multi-mode fiber [J ] . Optics Express , 2017 , 25 ( 21 ): 25637 .
WANG A D , ZHU L , WANG L L , et al . Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission [J ] . Optics Express , 2018 , 26 ( 8 ): 10038 - 10047 .
ZHU L , WANG A D , CHEN S , et al . Orbital angular momentum mode multiplexed transmission in heterogeneous few-mode and multi-mode fiber network [J ] . Optics Letters , 2018 , 43 ( 8 ): 1894 - 1897 .
ZHU G X , HU Z Y , WU X , et al . Scalable mode division multiplexed transmission over a 10-km ring-core fiber using high-order orbital angular momentum modes [J ] . Optics Express , 2018 , 26 ( 2 ): 594 - 604 .
ZHU L , ZHU G X , WANG A D , et al . 18 km low-crosstalk OAM +WDM transmission with 224 individual channels enabled by a ring-core fiber with large high-order mode group separation [J ] . Optics Letters , 2018 , 43 ( 8 ): 1890 - 1893 .
LIU J , ZHU L , WANG A D , et al . All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing [J ] . Optics Letters , 2016 , 41 ( 16 ): 3896 .
LIU J , WANG J . Demonstration of reconfigurable joint orbital angular momentum mode and space switching [J ] . Scientific Reports , 2016 , 6 : 37331 .
MILIONE G , LAVERY M P J , HUANG H , et al . 4×20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer [J ] . Optics Letters , 2015 , 40 ( 9 ): 1980 .
LIU J , LI S M , ZHU L , et al . Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters [J ] . Light:Science & Applications , 2018 , 7 ( 3 ): 17148 .
BAGHDADY J , MILLER K , MORGAN K , et al . Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing [J ] . Optics Express , 2016 , 24 ( 9 ): 9794 .
REN Y X , LI L , WANG Z , et al . Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications [J ] . Scientific Reports , 2016 , 6 : 33306 .
ZHAO Y F , XU J , WANG A D , et al . Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link [J ] . Optics Express , 2017 , 25 ( 23 ): 28743 .
ZHAO Y F , WANG A D , ZHU L , et al . Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions [J ] . Optics Letters , 2017 , 42 ( 22 ): 4699 - 4702 .
WANG L L , AI J Z , ZHU L , et al . MDM transmission of CAP-16 signals over 1.1- km anti-bending trench-assisted elliptical-core few-mode fiber in passive optical networks [J ] . Optics Express , 2017 , 25 ( 19 ): 22991 - 23002 .
WANG A D , ZHU L , ZHAO Y F , et al . Adaptive water-air-water data information transfer using orbital angular momentum [J ] . Optics Express , 2018 , 26 ( 7 ): 8669 - 8678 .
ZHAO Y F , CAI C K , ZHANG J R , et al . Feedback-enabled adaptive underwater twisted light transmission link utilizing the reflection at the air-water interface [J ] . Optics Express , 2018 , 26 ( 13 ): 16102 - 16112 .
DU J , WANG J . High-dimensional structured light coding/decoding for free-space optical communications free of obstructions [J ] . Optics Letters , 2015 , 40 ( 21 ): 4827 - 4830 .
FICKLER R , LAPKIEWICZ R , PLICK W N , et al . Quantum entanglement of high angular momenta [J ] . Science , 2012 , 338 ( 6107 ): 640 - 643 .
HUI X N , ZHENG S L , CHEN Y L , et al . Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas [J ] . Scientific Reports , 2015 , 5 : 10148 .
ZHAO Z , REN Y X , XIE G D , et al . Experimental demonstration of 16-Gbit/s millimeter-wave communications link using thin metamaterial plates to generate data-carrying orbital-angular-momentum beams [C ] // Proceedings of 2015 IEEE International Conference on Communications (ICC) . Piscataway:IEEE Press , 2015 : 1392 - 1397 .
ZHU L , WEI X L , WANG J , et al . Experimental demonstration of basic functionalities for 0.1-THz orbital angular momentum (OAM) communications [C ] // Proceedings of Optical Fiber Communication Conference . Piscataway:IEEE Press , 2014 : 1 - 3 .
CHAN V W S . Free-space optical communications [J ] . Journal of Lightwave Technology , 2006 , 24 ( 12 ): 4750 - 4762 .
ANSARI I S , ALOUINI M S , CHENG J L . Ergodic capacity analysis of free-space optical links with nonzero boresight pointing errors [J ] . IEEE Transactions on Wireless Communications , 2015 , 14 ( 8 ): 4248 - 4264 .
WANG J , LIU J , LV X , et al . Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals [C ] // Proceedings of 2015 European Conference on Optical Communication (ECOC) . Piscataway:IEEE Press , 2015 : 1 - 3 .
SMIT M , VAN DER TOL J , HILL M . Moore's law in photonics [J ] . Laser & Photonics Reviews , 2012 , 6 ( 1 ): 1 - 13 .
SU T H , SCOTT R P , DJORDJEVIC S S , et al . Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices [J ] . Optics Express , 2012 , 20 ( 9 ): 9396 .
GUAN B B , QIN C , SCOTT R P , et al . Polarization diversified integrated circuits for orbital angular momentum multiplexing [C ] // Proceedings of 2015 IEEE Photonics Conference (IPC) . Piscataway:IEEE Press , 2015 : 649 - 652 .
LI S M , NONG Z C , WU X , et al . Demonstration of chip-to-chip communication based on ultra-compact orbital angular momentum (de)multiplexers [C ] // Proceedings of Conference on Lasers and Electro-Optics . Washington:OSA Publishing , 2018 : 1 - 3 .
LIU J , LI S M , DING Y H , et al . Orbital angular momentum modes emission from a silicon photonic integrated device for km-scale data-carrying fiber transmission [J ] . Optics Express , 2018 , 26 ( 12 ): 15471 - 15479 .
POIRIER P , NEUNER B 3rd . Undersea laser communication using polarization and wavelength modulation [J ] . Applied Optics , 2014 , 53 ( 11 ): 2283 - 2289 .
LEE C M , ZHANG C , CANTORE M , et al . 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication [J ] . Optics Express , 2015 , 23 ( 12 ): 16232 .
HALE G M , QUERRY M R . Optical constants of water in the 200-nm to 200-microm wavelength region [J ] . Applied Optics , 1973 , 12 ( 3 ): 555 - 563 .
YAN Y , YUE Y , HUANG H , et al . Multicasting in a spatial division multiplexing system based on optical orbital angular momentum [J ] . Optics Letters , 2013 , 38 ( 19 ): 3930 - 3933 .
WANG J , LI S H , LIU J , et al . Experimental demonstration of N-dimensional 1-to-1100 multicasting (25 wavelengths × 22 orbital angular momentum modes × 2 polarizations) of OFDM-mQAM signal [C ] // Proceedings of CLEO . Washington:OSA Publishing , 2015 : 1 - 2 .
HUANG H , REN Y X , XIE G D , et al . Tunable orbital angular momentum mode filter based on optical geometric transformation [J ] . Optics Letters , 2014 , 39 ( 6 ): 1689 .
HUANG H , YUE Y , YAN Y , et al . Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum- multiplexed optical links [J ] . Optics Letters , 2013 , 38 ( 23 ): 5142 - 5145 .
HARM W , BERNET S , RITSCH-MARTE M , , et al . Adjustable diffractive spiral phase plates [J ] . Optics Express , 2015 , 23 ( 1 ): 413 - 421 .
HECKENBERG N R , MCDUFF R , SMITH C P , et al . Generation of optical phase singularities by computer-generated holograms [J ] . Optics Letters , 1992 , 17 ( 3 ): 221 .
CAI X L , WANG J W , STRAIN M J , et al . Integrated compact optical vortex beam emitters [J ] . Science , 2012 , 338 ( 6105 ): 363 - 366 .
YU N F , GENEVET P , KATS M A , et al . Light propagation with phase discontinuities:generalized laws of reflection and refraction [J ] . Science , 2011 , 334 ( 6054 ): 333 - 337 .
KARIMI E , SCHULZ S A , DE LEON I , et al . Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface [J ] . Light:Science & Applications , 2014 , 3 ( 5 ): e167 .
GARIEPY G , LEACH J , KIM K T , et al . Creating high-harmonic beams with controlled orbital angular momentum [J ] . Physical Review Letters , 2014 , 113 ( 15 ): 153901 .
BLOCH N V , SHEMER K , SHAPIRA A , et al . Twisting light by nonlinear photonic crystals [J ] . Physical Review Letters , 2012 , 108 ( 23 ): 233902 .
ZHAO Z , REN Y X , XIE G D , et al . Invited Article:division and multiplication of the state order for data-carrying orbital angular momentum beams [J ] . APL Photonics , 2016 , 1 ( 9 ): 090802 .
RUFFATO G , MASSARI M , ROMANATO F . Multiplication and division of the orbital angular momentum of light with diffractive transformation optics [J ] . Light:Science & Applications , 2019 , 8 : 113 .
BRAGG W L . The X-ray microscope [J ] . Nature , 1942 , 149 ( 3782 ): 470 - 471 .
GABOR D . A new microscopic principle [J ] . Nature , 1948 , 161 ( 4098 ): 777 - 778 .
SUR B , ROGGE R B , HAMMOND R P , et al . Atomic structure holography using thermal neutrons [J ] . Nature , 2001 , 414 ( 6863 ): 525 - 527 .
OZAKI M , KATO J I , KAWATA S . Surface-plasmon holography with white light illumination [C ] // SPIE NanoScience + Engineering.Proc SPIE 8455,Metamaterials:Fundamentals and Applications V . Bellingham:SPIE Press,2012 , 8455 : 26 - 31 .
MUELLER J P B , RUBIN N A , DEVLIN R C , et al . Metasurface polarization optics:independent phase control of arbitrary orthogonal states of polarization [J ] . Physical Review Letters , 2017 , 118 ( 11 ): 113901 .
LIM K T P , LIU H L , LIU Y J , et al . Holographic colour prints for enhanced optical security by combined phase and amplitude control [J ] . Nature Communications , 2019 , 10 : 25 .
FANG X Y , REN H R , GU M . Orbital angular momentum holography for high-security encryption [J ] . Nature Photonics , 2020 , 14 ( 2 ): 102 - 108 .
ERHARD M , FICKLER R , KRENN M , et al . Twisted photons:new quantum perspectives in high dimensions [J ] . Light:Science & Applications , 2018 , 7 ( 3 ): 17146 .
CAO H , GAO S C , ZHANG C , et al . Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber [J ] . Optica , 2020 , 7 ( 3 ): 232 .
LIU J , NAPE I , WANG Q , et al . Multidimensional entanglement transport through single-mode fiber [J ] . Science Advances , 2020 , 6 ( 4 ): eaay0837 .
0
浏览量
812
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构