浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 重庆邮电大学计算机科学与技术学院,重庆 400065
[ "安泽亮(1993− ),男,安徽蚌埠人,重庆邮电大学博士生,主要研究方向为调制识别、神经网络" ]
[ "张天骐(1971− ),男,四川眉山人,博士,重庆邮电大学教授、博士生导师,主要研究方向为神经网络、盲信号处理" ]
[ "马宝泽(1990− ),男,河北廊坊人,重庆邮电大学博士生,主要研究方向为盲源分离改进" ]
[ "邓盼(1990− ),男,四川宜宾人,重庆邮电大学博士生,主要研究方向为信号与信息处理、图像处理" ]
[ "徐雨晴(1990− ),女,安徽宿州人,重庆邮电大学博士生,主要研究方向为数据分析、人工智能" ]
网络出版日期:2021-07,
纸质出版日期:2021-07-25
移动端阅览
安泽亮, 张天骐, 马宝泽, 等. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021,42(7):84-94.
Zeliang AN, Tianqi ZHANG, Baoze MA, et al. Cooperative modulation recognition based on one-dimensional convolutional neural network for MIMO-OSTBC signal[J]. Journal on communications, 2021, 42(7): 84-94.
安泽亮, 张天骐, 马宝泽, 等. 基于一维CNN的多入多出OSTBC信号协作调制识别[J]. 通信学报, 2021,42(7):84-94. DOI: 10.11959/j.issn.1000-436x.2021142.
Zeliang AN, Tianqi ZHANG, Baoze MA, et al. Cooperative modulation recognition based on one-dimensional convolutional neural network for MIMO-OSTBC signal[J]. Journal on communications, 2021, 42(7): 84-94. DOI: 10.11959/j.issn.1000-436x.2021142.
为识别多入多出正交空时分组码(MIMO-OSTBC)系统所采用的调制样式,提出了一种基于一维卷积神经网络(1D-CNN)的协作调制识别算法。首先,采用迫零盲均衡来提升不同调制信号间区分度,并选用天然无损的同相正交(I/Q)信号作为浅层特征;然后,设计并训练基于 1D-CNN 的识别模型,从浅层特征中提取深层特征;最后,采用投票决策和置信度决策融合策略,提升多天线接收端协作识别精度。实验结果表明,所提算法能有效识别{BPSK
4PSK
8PSK
16QAM
4PAM}5种调制方式,当信噪比大于或等于-2 dB时,识别精度可达100%。
To recognize the modulation style adopted in multiple-input-multiple-output orthogonal space-time block code (MIMO-OSTBC) systems
a cooperative modulation recognition algorithm based on the one-dimensional convolutional neural network (1D-CNN) was proposed.With the lossless I/Q signal selected as shallow features
the zero-forcing blind equalization was first leveraged to improve the discrimination of different modulation signals.Then the 1D-CNN recognition model was devised and trained to extract deep features from shallow ones.Later
two decision fusion strategies of voting-based and confidence-based were leveraged in the multiple-antenna receiver to improve recognition accuracy.Experimental results show that the proposed algorithm can effectively recognize five modulation types {BPSK
4PSK
8PSK
16QAM
4PAM}
with a 100% recognition accuracy when the signal-to-noise is equal or greater than-2 dB.
SRIVASTAVA S , KUMAR M S , MISHRA A , et al . Sparse doubly-selective channel estimation techniques for OSTBC MIMO-OFDM systems:a hierarchical Bayesian Kalman filter based approach [J ] . IEEE Transactions on Communications , 2020 , 68 ( 8 ): 4844 - 4858 .
LARSSON E G , STOICA P , LI J . Orthogonal space-time block codes:maximum likelihood detection for unknown channels and unstructured interferences [J ] . IEEE Transactions on Signal Processing , 2003 , 51 ( 2 ): 362 - 372 .
LUO M G , LI L P , TANG B . A blind modulation recognition algorithm suitable for MIMO-STBC systems [C ] // International Conference on Computer and Information Technology . Piscataway:IEEE Press , 2012 : 271 - 276 .
. BAYER Ö , ÖNER M . Joint space time block code and modulation classification for MIMO systems [J ] . IEEE Wireless Communications Letters , 2017 , 6 ( 1 ): 62 - 65 .
TAYAKOUT H , DAYOUB I , GHANEM K , et al . Automatic modulation classification for D-STBC cooperative relaying networks [J ] . IEEE Wireless Communications Letters , 2018 , 7 ( 5 ): 780 - 783 .
MAREY M , DOBRE O A . Blind modulation classification for alamouti STBC system with transmission impairments [J ] . IEEE Wireless Communications Letters , 2015 , 4 ( 5 ): 521 - 524 .
SHAH M H , DANG X Y . Low-complexity deep learning and RBFN architectures for modulation classification of space-time block-code (STBC)-MIMO systems [J ] . Digital Signal Processing , 2020 ,99:102656.
CHOQUEUSE V , MANSOUR A , BUREL G , et al . Blind channel estimation for STBC systems using higher-order statistics [J ] . IEEE Transactions on Wireless Communications , 2011 , 10 ( 2 ): 495 - 505 .
ABRUDAN T E , ERIKSSON J , KOIVUNEN V . Steepest descent algorithms for optimization under unitary matrix constraint [J ] . IEEE Transactions on Signal Processing , 2008 , 56 ( 3 ): 1134 - 1147 .
O’SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 168 - 179 .
RAJENDRAN S , MEERT W , GIUSTINIANO D , et al . Deep learning models for wireless signal classification with distributed low-cost spectrum sensors [J ] . IEEE Transactions on Cognitive Communications and Networking , 2018 , 4 ( 3 ): 433 - 445 .
KIRANYAZ S , GASTLI A , BEN-BRAHIM L , , et al . Real-time fault detection and identification for MMC using 1-D convolutional neural networks [J ] . IEEE Transactions on Industrial Electronics , 2019 , 66 ( 11 ): 8760 - 8771 .
查雄 , 彭华 , 秦鑫 , 等 . 基于多端卷积神经网络的调制识别方法 [J ] . 通信学报 , 2019 , 40 ( 11 ): 30 - 37 .
ZHA X , PENG H , QIN X , et al . Modulation recognition method based on multi-inputs convolution neural network [J ] . Journal on Communications , 2019 , 40 ( 11 ): 30 - 37 .
PAPADIAS C B . Globally convergent blind source separation based on a multiuser kurtosis maximization criterion [J ] . IEEE Transactions on Signal Processing , 2000 , 48 ( 12 ): 3508 - 3519 .
顾浙骐 , 张志培 . 基于协作多点传输的非线性顽健预编码 [J ] . 通信学报 , 2015 , 36 ( 10 ): 140 - 148 .
GU Z Q , ZHANG Z P . Nonlinear robust precoding for coordinated multipoint transmission [J ] . Journal on Communications , 2015 , 36 ( 10 ): 140 - 148 .
0
浏览量
434
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构