浏览全部资源
扫码关注微信
1. 吉林大学通信工程学院,吉林 长春 130012
2. 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
[ "王雪(1984− ),女,吉林白山人,博士,吉林大学副教授,主要研究方向为物联网、D2D技术与异构无线网络等" ]
[ "刘京(1996− ),男,河南郑州人,吉林大学硕士生,主要研究方向为异构蜂窝超密集网络通信" ]
[ "孙佳妮(1996− ),女,吉林长春人,吉林大学硕士生,主要研究方向为异构无线网络" ]
[ "张继真(1984− ),男,山西太原人,博士,中国科学院长春光学精密机械与物理研究所副研究员、硕士生导师,主要研究方向为金属基光学技术、光机结构设计" ]
[ "钱志鸿(1957− ),男,吉林长春人,博士,吉林大学教授、博士生导师,主要研究方向为物联网、D2D、Wi-Fi、RFID等无线网络与通信技术" ]
网络出版日期:2021-07,
纸质出版日期:2021-07-25
移动端阅览
王雪, 刘京, 孙佳妮, 等. 基于谱聚类的异构蜂窝超密集网络高能效资源分配算法[J]. 通信学报, 2021,42(7):162-175.
Xue WANG, Jing LIU, Jiani SUN, et al. Spectral clustering-based energy-efficient resource allocation algorithm in heterogeneous cellular ultra-dense network[J]. Journal on communications, 2021, 42(7): 162-175.
王雪, 刘京, 孙佳妮, 等. 基于谱聚类的异构蜂窝超密集网络高能效资源分配算法[J]. 通信学报, 2021,42(7):162-175. DOI: 10.11959/j.issn.1000-436x.2021141.
Xue WANG, Jing LIU, Jiani SUN, et al. Spectral clustering-based energy-efficient resource allocation algorithm in heterogeneous cellular ultra-dense network[J]. Journal on communications, 2021, 42(7): 162-175. DOI: 10.11959/j.issn.1000-436x.2021141.
为了解决5G移动通信超密集场景下功耗较大、频谱紧张、能效不高等问题,针对两层异构蜂窝非正交多址接入网络,提出了一种基于能效最大的资源分配算法。在超密集场景下行通信链路中,通过分步求解频率资源分配和功率分配方案将NP-hard优化问题转化为确定性的约束寻优问题,提出了基于谱聚类用户分组算法和改进的k-means基站聚类分簇算法,得到不同用户组的频率资源分配方案。基于Dinkelbach方法将能效优化的分式问题转化为可求解的连续凸优化问题,并通过拉格朗日乘子迭代算法实现功率分配。从基站分簇、用户分组、资源块分配与功率分配方面共同优化系统能效,最大限度地削弱基站簇间干扰与簇内干扰。仿真结果表明,所提算法在能效和计算效率相较对比算法均有明显优化。
In order to solve problems of high power consumption
spectrum shortage and low energy efficiency in the ultra-intensive 5G mobile communication scenario
a resource allocation algorithm based on the maximum energy efficiency for the two-layer heterogeneous cellular non-orthogonal multiple access network was proposed.The original NP-hard optimization problem on the downlink communication link of ultra-dense scene was divided into two subproblem
such as frequency resource allocation and power allocation
which became a deterministic constraint optimization problem.The frequency resource allocation scheme of different user groups was obtained by using base station clustering based on the improved k-means algorithm and users grouping based on spectral clustering algorithm.The fraction of energy efficiency optimization was transformed into a solvable continuous convex optimization problem and power distribution was realized by Dinkelbach method
and the Lagrange multiplier iterative algorithm
respectively.Jointly optimize system energy efficiency in terms of base station clustering
user grouping
resource block allocation and power allocation
which minimized the inter-cluster interference and intra-cluster interference of the base station efficiently.The simulation results show that the proposed algorithm is better on energy efficiency and computational efficiency compared with existing algorithms.
钱志鸿 , 王雪 . 面向5G通信网的D2D技术综述 [J ] . 通信学报 , 2016 , 37 ( 7 ): 1 - 14 .
QIAN Z H , WANG X . Reviews of D2D technology for 5G communication networks [J ] . Journal on Communications , 2016 , 37 ( 7 ): 1 - 14 .
LOPEZ-PEREZ D , DING M , CLAUSSEN H , et al . Towards 1 gbps/UE in cellular systems:understanding ultra-dense small cell deployments [J ] . IEEE Communications Surveys & Tutorials , 2015 , 17 ( 4 ): 2078 - 2101 .
ZHU Q , WANG X , QIAN Z H . Energy-efficient small cell cooperation in ultra-dense heterogeneous networks [J ] . IEEE Communications Letters , 2019 , 23 ( 9 ): 1648 - 1651 .
ANDREWS J G , BUZZI S , CHOI W , et al . What will 5G be? [J ] . IEEE Journal on Selected Areas in Communications , 2014 , 32 ( 6 ): 1065 - 1082 .
GE X H , TU S , MAO G Q , et al . 5G ultra-dense cellular networks [J ] . IEEE Wireless Communications , 2016 , 23 ( 1 ): 72 - 79 .
LIU Q S , SHI J P . Base station sleep and spectrum allocation in heterogeneous ultra-dense networks [J ] . Wireless Personal Communications , 2018 , 98 ( 4 ): 3611 - 3627 .
LIU Y F , WANG Y , ZHANG Y , et al . Game-theoretic hierarchical resource allocation in ultra-dense networks [C ] // 2016 IEEE 27th IEEE Annual International Symposium on Personal,Indoor,and Mobile Radio Communications . Piscataway:IEEE Press , 2016 : 1561 - 1566 .
LIAO X M , SHI J , LI Z , et al . A model-driven deep reinforcement learning heuristic algorithm for resource allocation in ultra-dense cellular networks [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 1 ): 983 - 997 .
PENG J , ZENG J , SU X , et al . A QoS-based cross-tier cooperation resource allocation scheme over ultra-dense HetNets [J ] . IEEE Access , 2019 , 7 : 27086 - 27096 .
LIN S J , TIAN H . Clustering based interference management for QoS guarantees in OFDMA femtocell [C ] // 2013 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2013 : 649 - 654 .
ZHAO C D , XU X F , GAO Z B , et al . A coloring-based cluster resource allocation for ultra dense network [C ] // 2016 IEEE International Conference on Signal Processing,Communications and Computing . Piscataway:IEEE Press , 2016 : 1 - 5 .
ZHOU L , HU X P , NGAI E C H , et al . A dynamic graph-based scheduling and interference coordination approach in heterogeneous cellular networks [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 5 ): 3735 - 3748 .
LIANG L , WANG W , JIA Y J , et al . A cluster-based energy-efficient resource management scheme for ultra-dense networks [J ] . IEEE Access , 2016 , 4 : 6823 - 6832 .
CAO J Q , PENG T , LIU X , et al . Resource allocation for ultradense networks with machine-learning-based interference graph construction [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 3 ): 2137 - 2151 .
XU W P , QIU R H , JIANG X Q . Resource allocation in heterogeneous cognitive radio network with non-orthogonal multiple access [J ] . IEEE Access , 2019 , 7 : 57488 - 57499 .
ABROL A , JHA R K , JAIN S , et al . Joint power allocation and relay selection strategy for 5G network:a step towards green communication [J ] . Telecommunication Systems , 2018 , 68 ( 2 ): 201 - 215 .
金明录 , 郭楠 . 基于Thomas簇过程的异构蜂窝网能量效率分析 [J ] . 通信学报 , 2019 , 40 ( 10 ): 149 - 156 .
JIN M L , GUO N . Energy efficiency analysis of heterogeneous cellular network based on Thomas cluster process [J ] . Journal on Communications , 2019 , 40 ( 10 ): 149 - 156 .
SUN Y Z , GUO G , ZHANG S Q , et al . A cluster-based energy-efficient resource management scheme with QoS requirement for ultra-dense networks [J ] . IEEE Access , 2020 , 8 : 182412 - 182421 .
HUANG J W , ZHOU P G , LUO K , et al . Two-stage resource allocation scheme for three-tier ultra-dense network [J ] . China Communications , 2017 , 14 ( 10 ): 118 - 129 .
LI W , WANG J , YANG G S , et al . Energy efficiency maximization oriented resource allocation in 5G ultra-dense network:centralized and distributed algorithms [J ] . Computer Communications , 2018 , 130 : 10 - 19 .
LI W C , ZHANG J . Cluster-based resource allocation scheme with QoS guarantee in ultra-dense networks [J ] . IET Communications , 2018 , 12 ( 7 ): 861 - 867 .
ZHANG Y Z , ZHANG D M , SHI H L . k-means clustering based on self-adaptive weight [C ] // Proceedings of 2012 2nd International Conference on Computer Science and Network Technology . Piscataway:IEEE Press , 2012 : 1540 - 1544 .
CHEN W F , FENG G C . Spectral clustering:a semi-supervised approach [J ] . Neurocomputing , 2012 , 77 ( 1 ): 229 - 242 .
NASCIMENTO M C V , DE CARVALHO A C P L F . Spectral methods for graph clustering-a survey [J ] . European Journal of Operational Research , 2011 , 211 ( 2 ): 221 - 231 .
MAO T L , FENG G , LIANG L , et al . Distributed energy-efficient power control for macro–femto networks [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 2 ): 718 - 731 .
FOUKALAS F , SHAKERI R , KHATTAB T . Distributed power allocation for multi-flow carrier aggregation in heterogeneous cognitive cellular networks [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 4 ): 2486 - 2498 .
徐勇军 , 谢豪 , 陈前斌 , 等 . 基于不完美CSI的异构NOMA网络能效优化算法 [J ] . 通信学报 , 2020 , 41 ( 7 ): 131 - 140 .
XU Y J , XIE H , CHEN Q B , et al . Energy efficiency optimization algorithm for heterogeneous NOMA network based on imperfect CSI [J ] . Journal on Communications , 2020 , 41 ( 7 ): 131 - 140 .
DINKELBACH W . On nonlinear fractional programming [J ] . Management Science , 1967 , 13 ( 7 ): 492 - 498 .
0
浏览量
637
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构