浏览全部资源
扫码关注微信
重庆邮电大学通信与信息工程学院信号与信息处理重庆市重点实验室,重庆 400065
[ "马宝泽(1990- ),男,河北廊坊人,重庆邮电大学博士生,主要研究方向为盲信号分离处理、深度学习" ]
[ "张天骐(1971- ),男,四川眉山人,博士,重庆邮电大学教授、博士生导师,主要研究方向为盲信号识别、无线通信的智能信号处理、盲信号处理" ]
[ "安泽亮(1993- ),男,安徽蚌埠人,重庆邮电大学博士生,主要研究方向为调制识别、深度学习、盲信号处理" ]
[ "邓盼(1990- ),男,四川宜宾人,重庆邮电大学博士生,主要研究方向为信号与信息处理、深度学习" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-25
移动端阅览
马宝泽, 张天骐, 安泽亮, 等. 基于张量分解的卷积盲源分离方法[J]. 通信学报, 2021,42(8):52-60.
Baoze MA, Tianqi ZHANG, Zeliang AN, et al. Convolutive blind source separation method based on tensor decomposition[J]. Journal on communications, 2021, 42(8): 52-60.
马宝泽, 张天骐, 安泽亮, 等. 基于张量分解的卷积盲源分离方法[J]. 通信学报, 2021,42(8):52-60. DOI: 10.11959/j.issn.1000-436x.2021140.
Baoze MA, Tianqi ZHANG, Zeliang AN, et al. Convolutive blind source separation method based on tensor decomposition[J]. Journal on communications, 2021, 42(8): 52-60. DOI: 10.11959/j.issn.1000-436x.2021140.
基于张量分解框架提出了一种卷积盲源分离方法,同时解决了混合滤波器矩阵估计和频点排序的问题。首先,根据观测信号的估计自相关矩阵构造出所有频点处的张量模型;然后,利用张量分解技术计算出每个频点上对应的因子矩阵作为该频点的估计混合滤波器矩阵;最后,采用以功率比作为测度的全局优化排序策略消除了全频段的排序模糊性。实验表明,所提方法在不同仿真条件下处理卷积混合的实测语音时表现出了比现有算法更优异的分离性能。
A convolutive blind source separation algorithm was proposed based on tensor decomposition framework
to address the estimation of mixed filter matrix and the permutation alignment of frequency bin simultaneously.Firstly
the tensor models at all frequency bins were constructed according to the estimated autocorrelation matrix of the observed signals.Secondly
the factor matrix corresponding to each frequency bin was calculated by tensor decomposition technique as the estimated mixed filter matrix for that bin.Finally
a global optimal permutation strategy with power ratio as the permutation alignment measure was adopted to eliminate the permutation ambiguity in all the frequency bins.Experimental results demonstrate that the proposed method achieves better separation performance than other existing algorithms when dealing with convolutive mixed speech under different simulation conditions.
张天骐 , 马宝泽 , 强幸子 , 等 . 带自适应动量因子的变步长盲源分离方法 [J ] . 通信学报 , 2017 , 38 ( 3 ): 16 - 24 .
ZHANG T Q , MA B Z , QIANG X Z , et al . Variable-step blind source separation method with adaptive momentum factor [J ] . Journal on Communications , 2017 , 38 ( 3 ): 16 - 24 .
MAZUR R , MERTINS A . An approach for solving the permutation problem of convolutive blind source separation based on statistical signal models [J ] . IEEE Transactions on Audio,Speech,and Language Processing , 2009 , 17 ( 1 ): 117 - 126 .
XIE K , ZHOU G X , YANG J J , et al . Eliminating the permutation ambiguity of convolutive blind source separation by using coupled frequency bins [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2020 , 31 ( 2 ): 589 - 599 .
KANG F , YANG F R , YANG J . A low-complexity permutation alignment method for frequency-domain blind source separation [J ] . Speech Communication , 2019 , 115 : 88 - 94 .
KEMIHA M , KACHA A . Complex blind source separation [J ] . Circuits,Systems,and Signal Processing , 2017 , 36 ( 11 ): 4670 - 4687 .
LEE I , KIM T , LEE T W . Fast fixed-point independent vector analysis algorithms for convolutive blind source separation [J ] . Signal Processing , 2007 , 87 ( 8 ): 1859 - 1871 .
KITAMURA D , ONO N , SAWADA H , et al . Determined blind source separation unifying independent vector analysis and nonnegative matrix factorization [J ] . IEEE/ACM Transactions on Audio,Speech,and Language Processing , 2016 , 24 ( 9 ): 1626 - 1641 .
FU X , IBRAHIM S , WAI H T , et al . Block-randomized stochastic proximal gradient for low-rank tensor factorization [J ] . IEEE Transactions on Signal Processing , 2020 , 68 : 2170 - 2185 .
LATHAUWER L D , MOOR B D , VANDEWALLE J . Computation of the canonical decomposition by means of a simultaneous generalized schur decomposition [J ] . SIAM Journal on Matrix Analysis and Applications , 2004 , 26 ( 2 ): 295 - 327 .
YEREDOR A . Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation [J ] . IEEE Transactions on Signal Processing , 2002 , 50 ( 7 ): 1545 - 1553 .
LI X L , ADALI T . Complex independent component analysis by entropy bound minimization [J ] . IEEE Transactions on Circuits and Systems I:Regular Papers , 2010 , 57 ( 7 ): 1417 - 1430 .
NION D , MOKIOS K N , SIDIROPOULOS N D , et al . Batch and adaptive PARAFAC-based blind separation of convolutive speech mixtures [J ] . IEEE Transactions on Audio,Speech,and Language Processing , 2010 , 18 ( 6 ): 1193 - 1207 .
ALLEN J B , BERKLEY D A . Image method for efficiently simulating small-room acoustics [J ] . The Journal of the Acoustical Society of America , 1979 , 65 ( 4 ): 943 - 950 .
EMURA S , SAWADA H , ARAKI S , et al . Multi-delay sparse approach to residual crosstalk reduction for blind source separation [J ] . IEEE Signal Processing Letters , 2020 , 27 : 1630 - 1634 .
0
浏览量
706
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构