浏览全部资源
扫码关注微信
1. 合肥工业大学电气与自动化工程学院,安徽 合肥 230009
2. 武汉大学电气工程学院,湖北 武汉 430072
[ "黄源(1993- ),男,湖北黄石人,合肥工业大学博士生,主要研究方向为大规模MIMO无线信道估计和压缩感知技术" ]
[ "何怡刚(1966- ),男,湖南邵阳人,博士,合肥工业大学教授、博士生导师,主要研究方向为模拟和混合集成电路设计、测试与故障诊断、智能电网技术、射频识别技术、虚拟仪器和智能信号处理" ]
[ "吴裕庭(1992- ),男,安徽铜陵人,合肥工业大学博士生,主要研究方向为无线信道建模" ]
[ "程彤彤(1993- ),男,安徽淮南人,合肥工业大学博士生,主要研究方向为无线信道预编码技术" ]
[ "隋永波(1990- ),男,山东潍坊人,合肥工业大学博士生,主要研究方向为无线信道预测技术" ]
[ "宁暑光(1991- ),男,安徽阜阳人,合肥工业大学博士生,主要研究方向为电力设备故障诊断与定位" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-25
移动端阅览
黄源, 何怡刚, 吴裕庭, 等. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021,42(8):61-69.
Yuan HUANG, Yigang HE, Yuting WU, et al. Deep learning for compressed sensing based sparse channel estimation in FDD massive MIMO systems[J]. Journal on communications, 2021, 42(8): 61-69.
黄源, 何怡刚, 吴裕庭, 等. 基于深度学习的压缩感知FDD大规模MIMO系统稀疏信道估计算法[J]. 通信学报, 2021,42(8):61-69. DOI: 10.11959/j.issn.1000-436x.2021128.
Yuan HUANG, Yigang HE, Yuting WU, et al. Deep learning for compressed sensing based sparse channel estimation in FDD massive MIMO systems[J]. Journal on communications, 2021, 42(8): 61-69. DOI: 10.11959/j.issn.1000-436x.2021128.
针对FDD大规模多输入多输出(MIMO)下行链路系统,提出了一种新型的基于深度学习的压缩感知稀疏信道估计算法,即卷积重构网络(ConCSNet)。在不需要稀疏度的情况下,通过数据驱动的方式,利用ConCSNet求解从测量向量y到信号h的逆变换过程,从而解决压缩感知框架下的欠定最优化问题,实现对原始稀疏信道的重构。仿真结果表明,所提算法能更快速、准确地恢复稀疏度未知的大规模MIMO系统的信道状态信息。
For FDD massive multi-input multi-output (MIMO) downlink system
a novel deep learning method for compressed sensing based sparse channel estimation was proposed
which was called convolutional compressed sensing network (ConCSNet).In the ConCSNet
the convolutional neural network was utilized to solve the inverse transformation process from measurement vector y to signal h and solve the underdetermined optimization problem through data-driven method without sparsity.Simulation results show that the algorithm can recover the channel state information in massive MIMO Systems with unknown sparsity more quickly and accurately.
PAPAZAFEIROPOULOS A , KOURTESSIS P , RENZO M D , et al . Performance analysis of cell-free massive MIMO systems:astochastic geometry approach [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 4 ): 3523 - 3537 .
LU L , LI G Y , SWINDLEHURST A L , et al . An overview of massive MIMO:benefits and challenges [J ] . IEEE Journal of Selected Topics in Signal Processing , 2014 , 8 ( 5 ): 742 - 758 .
彭章友 , 王淼 , 李林霄 , 等 . 基于波束选择的毫米波massive MIMO预编码算法研究 [J ] . 电子测量技术 , 2016 , 39 ( 7 ): 183 - 189 .
PENG Z Y , WANG M , LI L X , et al . Research about a low dimensional beamspace precoder method in mm-w massive MU-MIMO systems [J ] . Electronic Measurement Technology , 2016 , 39 ( 7 ): 183 - 189 .
戈立军 , 郭徽 , 李月 , 等 . 大规模MIMO系统稀疏度自适应信道估计算法 [J ] . 通信学报 , 2017 , 38 ( 12 ): 57 - 62 .
GE L J , GUO H , LI Y , et al . Sparsity adaptive channel estimation algorithm based on compressive sensing for massive MIMO systems [J ] . Journal on Communications , 2017 , 38 ( 12 ): 57 - 62 .
LIN X C , WU S , JIANG C X , et al . Estimation of broadband multiuser millimeter wave massive MIMO-OFDM channels by exploiting their sparse structure [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 6 ): 3959 - 3973 .
RIADI A , BOULOUIRD M , HASSANI M M . Performance of massive-MIMO OFDM system with M-QAM modulation based on LS channel estimation [C ] // 2019 International Conference on Advanced Systems and Emergent Technologies . Piscataway:IEEE Press , 2019 : 74 - 78 .
LI K , SONG X , AHMAD M O , et al . An improved multicell MMSE channel estimation in a massive MIMO system [J ] . International Journal of Antennas and Propagation , 2014 , 6 ( 2 ): 1 - 9 .
GAO Z , DAI L L , DAI W , et al . Structured compressive sensing-based spatio-temporal joint channel estimation for FDD massive MIMO [J ] . IEEE Transactions on Communications , 2016 , 64 ( 2 ): 601 - 617 .
WU X D , YANG G H , HOU F , et al . Low-complexity downlink channel estimation for millimeter-wave FDD massive MIMO systems [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 4 ): 1103 - 1107 .
RAO X B , LAU V K N . Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems [J ] . IEEE Transactions on Signal Processing , 2014 , 62 ( 12 ): 3261 - 3271 .
ZHANG Y , VENKATESAN R , DOBRE O A , et al . Novel compressed sensing-based channel estimation algorithm and near-optimal pilot placement scheme [J ] . IEEE Transactions on Wireless Communications , 2016 , 15 ( 4 ): 2590 - 2603 .
WANG P , ZHANG H , YANG L . Estimation of block sparse channels with conjugate gradient SAMP in massive MIMO systems [C ] // 2019 4th International Conference on Electromechanical Control Technology and Transportation . Piscataway:IEEE Press , 2019 : 33 - 38 .
CANDES E J , WAKIN M B . An introduction to compressive sampling [J ] . IEEE Signal Processing Magazine , 2008 , 25 ( 2 ): 21 - 30 .
GUI G , WAN Q , PENG W , et al . Sparse multipath channel estimation using compressive sampling matching pursuit algorithm [C ] // IEEE Vehicular Technology Society Asia Pacific Wireless Communication Symposium . Piscataway:IEEE Press , 2010 : 19 - 22 .
高飞 , 彭云柯 , 薛艳明 . 基于 GOMP 及其改进的 OFDM 系统稀疏信道估计 [J ] . 北京理工大学学报 , 2016 , 36 ( 9 ): 956 - 959 .
GAO F , PENG Y K , XUE Y M . Generalized orthogonal matching pursuit and improved algorithms for compressive sensing based sparse channel estimation in OFDM systems [J ] . Transactions of Beijing Institute of Technology , 2016 , 36 ( 9 ): 956 - 959 .
KULKARNI K , LOHIT S , TURAGA P , et al . ReconNet:non-iterative reconstruction of images from compressively sensed measurements [C ] // 2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 449 - 458 .
GHOSH A , RATASUK R , MONDAL B , et al . LTE-advanced:next-generation wireless broadband technology [J ] . IEEE Wireless Communications , 2010 , 17 ( 3 ): 10 - 22 .
0
浏览量
772
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构