浏览全部资源
扫码关注微信
1. 燕山大学工业计算机控制工程河北省重点实验室,河北 秦皇岛 066004
2. 国网黑龙江省电力有限公司佳木斯供电公司,黑龙江 佳木斯 154002
3. 燕山大学电气工程学院,河北 秦皇岛 066004
[ "陈志旺(1978- ),男,河北武清人,博士,燕山大学副教授、硕士生导师,主要研究方向为多旋翼飞行控制、目标跟踪等" ]
[ "张忠新(1996- ),男,山东聊城人,燕山大学硕士生,主要研究方向为目标跟踪" ]
[ "宋娟(1978- ),女,黑龙江佳木斯人,国网黑龙江省电力有限公司高级工程师,主要研究方向为发电厂智能控制" ]
[ "雷海鹏(1997- ),男,河北张家口人,燕山大学硕士生,主要研究方向为目标跟踪" ]
[ "彭勇(1963- ),男,河北唐山人,博士,燕山大学教授、博士生导师,主要研究方向为特种机器人与人工智能" ]
网络出版日期:2021-08,
纸质出版日期:2021-08-25
移动端阅览
陈志旺, 张忠新, 宋娟, 等. 在线目标分类及自适应模板更新的孪生网络跟踪算法[J]. 通信学报, 2021,42(8):151-163.
Zhiwang CHEN, Zhongxin ZHANG, Juan SONG, et al. Tracking algorithm of Siamese network based on online target classification and adaptive template update[J]. Journal on communications, 2021, 42(8): 151-163.
陈志旺, 张忠新, 宋娟, 等. 在线目标分类及自适应模板更新的孪生网络跟踪算法[J]. 通信学报, 2021,42(8):151-163. DOI: 10.11959/j.issn.1000-436x.2021127.
Zhiwang CHEN, Zhongxin ZHANG, Juan SONG, et al. Tracking algorithm of Siamese network based on online target classification and adaptive template update[J]. Journal on communications, 2021, 42(8): 151-163. DOI: 10.11959/j.issn.1000-436x.2021127.
针对孪生网络跟踪算法在离线训练阶段学习被跟踪目标和其他对象的嵌入式特征,而这些特征缺少特定于目标的上下文信息,使跟踪算法的稳健性较差的问题,以SiamRPN++作为基准算法,提出了在线目标分类及自适应模板更新的孪生网络跟踪算法。首先,在离线训练阶段设计了互相关特征图监督模块,以学习更具判别力的嵌入式特征;其次,在线跟踪阶段设计了包含注意力机制的在线目标分类模块,在该模块中使用在线滤波器更新策略滤除背景噪声干扰;最后,设计了一种自适应模板更新模块,使用UpdateNet更新目标模板信息。在VOT2018、VOT2019这2个标准数据集上的实验结果验证了所提算法的有效性,相比基准算法SiamRPN++分别带来13.5%和18.2%(EAO)的性能提升。
Aiming at the problem that tracking algorithm of Siamese network learned the embedded features of the tracked target and the object in the offline training stage
and these embedded features often lacked the target-specific context information
which made these tracking algorithms less robust
a tracking algorithm of the Siamese network based on online target classification and adaptive template update was proposed
which used SiamRPN++ as the baseline algorithm.Firstly
a cross-correlation feature map supervision module for classification was designed in the offline training phase to learn more discriminative embedded features.Secondly
an online target classification module that included an attention mechanism in the online tracking phase was designed
and the online update filter strategy in the module was used to filter out the background noise.Finally
an adaptive template update module was designed to update the target template information using the UpdateNet.The results of experiments on VOT2018 and VOT2019 datasets verify the effectiveness of the proposed algorithm
which brings 13.5% and 18.2% (EAO) improvement respectively compared with the baseline algorithm SiamRPN++.
BOLME D S , BEVERIDGE J R , DRAPER B A , et al . Visual object tracking using adaptive correlation filters [C ] // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2010 : 2544 - 2550 .
HENRIQUES J F , CASEIRO R , MARTINS P , et al . High-speed tracking with kernelized correlation filters [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2015 , 37 ( 3 ): 583 - 596 .
DANELLJAN M , HÄGER G ,, KHAN F S , et al . Learning spatially regularized correlation filters for visual tracking [C ] // 2015 IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2015 : 4310 - 4318 .
DANELLJAN M , BHAT G , KHAN F S , et al . ECO:efficient convolution operators for tracking [C ] // 2017 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2017 : 6931 - 6939 .
TAO R , GAVVES E , SMEULDERS A W M . Siamese instance search for tracking [C ] // 2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 1420 - 1429 .
BERTINETTO L , VALMADRE J , HENRIQUES J F , et al . Fully-convolutional Siamese networks for object tracking [M ] . Berlin : Springer , 2016 .
LI B , YAN J J , WU W , et al . High performance visual tracking with Siamese region proposal network [C ] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 8971 - 8980 .
ZHU Z , WANG Q , LI B , et al . Distractor-aware Siamese networks for visual object tracking [M ] . Berlin : Springer , 2018 .
ZHANG Z P , PENG H W . Deeper and wider Siamese networks for real-time visual tracking [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 4586 - 4595 .
LI B , WU W , WANG Q , et al . SiamRPN++:evolution of Siamese visual tracking with very deep networks [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 4277 - 4286 .
WANG Q , ZHANG L , BERTINETTO L , et al . Fast online object tracking and segmentation:a unifying approach [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 1328 - 1338 .
陈志旺 , 张忠新 , 宋娟 , 等 . 基于目标感知特征筛选的孪生网络跟踪算法 [J ] . 光学学报 , 2020 , 40 ( 9 ): 0915003 .
CHEN Z W , ZHANG Z X , SONG J , et al . Tracking algorithm for Siamese network based on target-aware feature selection [J ] . Acta Optica Sinica , 2020 , 40 ( 9 ): 0915003 .
LIU W Y , WEN Y D , YU Z D , et al . Large-margin softmax loss for convolutional neural networks [J ] . arXiv Preprint,arXiv:1612.02295 , 2016 .
LI X , MA C , WU B Y , et al . Target-aware deep tracking [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 1369 - 1378 .
ZHOU J H , WANG P , SUN H Y . Discriminative and robust online learning for Siamese visual tracking [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 13017 - 13024 .
DANELLJAN M , BHAT G , KHAN F S , et al . ATOM:accurate tracking by overlap maximization [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 4655 - 4664 .
MATEJ K , JIRI M , ALES L , et al . The seventh visual object tracking VOT2019 challenge results [C ] // 2019 IEEE/CVF International Conference on Computer Vision Workshop . Piscataway:IEEE Press , 2019 : 2206 - 2241 .
ZHANG L C , GONZALEZ-GARCIA A ,, WEIJER J V D , et al . Learning the model update for Siamese trackers [C ] // 2019 IEEE/CVF International Conference on Computer Vision . Piscataway:IEEE Press , 2019 : 4009 - 4018 .
KRISTAN M , LEONARDIS A , MATAS J , et al . The sixth visual object tracking VOT2018 challenge results [C ] // Proceedings of the European Conference on Computer Vision . Berlin:Springer , 2018 : 3 - 53 .
FAN H , LIN L T , YANG F , et al . LaSOT:a high-quality benchmark for large-scale single object tracking [C ] // 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2019 : 5369 - 5378 .
CHEN Z D , ZHONG B N , LI G R , et al . Siamese box adaptive network for visual tracking [C ] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2020 : 6667 - 6676 .
BHAT G , DANELLJAN M , VAN GOOL L , et al . Learning discriminative model prediction for tracking [C ] // 2019 IEEE/CVF International Conference on Computer Vision . Piscataway:IEEE Press , 2019 : 6181 - 6190 .
XU Y D , WANG Z Y , LI Z X , et al . SiamFC++:towards robust and accurate visual tracking with target estimation guidelines [J ] . Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 7 ): 12549 - 12556 .
VOIGTLAENDER P , LUITEN J , TORR P H S , et al . Siam R-CNN:visual tracking by Re-detection [C ] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2020 : 6577 - 6587 .
0
浏览量
581
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构