浏览全部资源
扫码关注微信
1. 杭州电子科技大学计算机学院,浙江 杭州 310018
2. 上海大学计算机工程与科学学院,上海 200444
3. 韩国嘉泉大学计算机工程系,城南市 461701
4. 北京交通大学计算机与信息技术学院,北京 100044
5. 西交利物浦大学电气与电子工程系,江苏 苏州 215123
[ "李尤慧子(1989− ),女,河南新蔡人,博士,杭州电子科技大学副教授,主要研究方向为边缘计算、隐私安全、移动互联网计算、高能效系统" ]
[ "殷昱煜(1980− ),男,重庆人,博士,杭州电子科技大学教授,主要研究方向为边缘计算、服务计算、大数据分析、软件形式化方法等" ]
[ "高洪皓(1985− ),男,浙江临海人,博士,上海大学副教授、韩国嘉泉大学教授,主要研究方向为软件形式化验证、服务协同计算、无线网络和工业物联网、智能医学影像处理等" ]
[ "金一(1982− ),女,河北石家庄人,博士,北京交通大学教授、博士生导师,主要研究方向为机器学习与认知计算、人工智能及应用、图像感知与识别" ]
[ "王新珩(1968− ),男,山东平度人,博士,西交利物浦智能工程学院教授、博士生导师,主要研究方向为物联网、室内定位、智能化服务和智慧城市" ]
网络出版日期:2021-06,
纸质出版日期:2021-06-25
移动端阅览
李尤慧子, 殷昱煜, 高洪皓, 等. 面向隐私保护的非聚合式数据共享综述[J]. 通信学报, 2021,42(6):195-212.
Youhuizi LI, Yuyu YIN, Honghao GAO, et al. Survey on privacy protection in non-aggregated data sharing[J]. Journal on communications, 2021, 42(6): 195-212.
李尤慧子, 殷昱煜, 高洪皓, 等. 面向隐私保护的非聚合式数据共享综述[J]. 通信学报, 2021,42(6):195-212. DOI: 10.11959/j.issn.1000-436x.2021120.
Youhuizi LI, Yuyu YIN, Honghao GAO, et al. Survey on privacy protection in non-aggregated data sharing[J]. Journal on communications, 2021, 42(6): 195-212. DOI: 10.11959/j.issn.1000-436x.2021120.
海量数据价值虽高但与用户隐私关联也十分密切,以高效安全地共享多方数据且避免隐私泄露为目标,介绍了非聚合式数据共享领域的研究发展。首先,简述安全多方计算及其相关技术,包括同态加密、不经意传输、秘密共享等;其次,分析联邦学习架构,从源数据节点和通信传输优化方面探讨现有研究;最后,整理对比面向隐私保护的非聚合式数据共享框架,为后续研究方案构建和运行提供支撑。此外,总结提出非聚合式数据共享领域的挑战和潜在的研究方向,如复杂多参与方场景、优化开销平衡、相关安全隐患等。
Although there is a great value hidden in the massive data
it can also easily expose user privacy.Aiming at efficiently and securely sharing data from multiple parties and avoiding leakage of user private information
the development of related research and technologies on the non-aggregated data sharing field was introduced.Firstly
secure multi-party computing and its technologies were briefly described
including homomorphic encryption
oblivious transfer
secret sharing
etc.Secondly
the federated learning architecture was analyzed from the aspects of source data nodes and transmission optimization.Finally
the existing non-aggregated data sharing frameworks were listed and compared.In addition
the challenges and future potential research directions were summarized
such as complex multi-party scenarios
the balance between optimization and cost
as well as related security risks.
于文平 . 中国物联网市场发展现状分析及未来五年发展趋势预测 [J ] . 物联网技术 , 2018 , 8 ( 3 ): 9 - 11 .
YU W P . Analysis of the development status of China's Internet of things market and forecast of its development trend in the next five years [J ] . Internet of Things Technologies , 2018 , 8 ( 3 ): 9 - 11 .
瑞星 . 2020 年中国网络安全报告 [J ] . 信息安全研究 , 2021 , 7 ( 2 ): 102 - 109 .
RISING . China’s cybersecurity report in 2020 [J ] . Journal of Informa-tion Security Research , 2021 , 7 ( 2 ): 102 - 109 .
REGULATION G D P . Regulation (EU) 2016/679 of the European Parlia ment and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data,and repealing Directive 95/46 [J ] . Official Journal of the European Union (OJ) . 2016 , 59 ( 1-88 ): 294 .
YAO A C , . Protocols for secure computation [C ] // 23rd IEEE Annual Symposium on Foundations of Computer Science . Piscataway:IEEE Press , 1982 : 160 - 164 .
WINTERNITZ R S , . A secure one-way hash function built from DES [C ] // 1984 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 1984 :88.
SHI W S , CAO J , ZHANG Q , et al . Edge computing:vision and challenges [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 5 ): 637 - 646 .
ION M , KREUTER B , NERGIZ E , et al . Private intersection-sum protocol with applications to attributing aggregate AD conversions [J ] . IACR Cryptology ePrint Archive , 2017 , 2017 :738
RIVEST R L , ADLEMAN L , DERTOUZOS M L . On data banks and privacy homomorphisms [J ] . Foundations of Secure Computation , 1978 , 4 ( 11 ): 169 - 180 .
RIVEST R L , SHAMIR A , ADLEMAN L . A method for obtaining digital signatures and public-key cryptosystems [J ] . Communications of the ACM , 1978 , 21 ( 2 ): 120 - 126 .
PAILLIER P , . Public-key cryptosystems based on composite degree residuosity classes [C ] // International Conference on the Theory and Application of Cryptographic Techniques . Berlin:Springer , 1999 : 223 - 238 .
ABADI A , TERZIS S , METERE R , et al . Efficient delegated private set intersection on outsourced private datasets [J ] . IEEE Transactions on Dependable and Secure Computing , 2019 , 16 ( 4 ): 608 - 624 .
RUAN O , WANG Z H , MI J , et al . New approach to set representation and practical private set-intersection protocols [J ] . IEEE Access , 2019 , 7 : 64897 - 64906 .
KAVOUSI A , MOHAJERI J , SALMASIZADEH M . Improved secure efficient delegated private set intersection [C ] // 2020 28th Iranian Conference on Electrical Engineering . Piscataway:IEEE Press , 2020 : 1 - 6 .
RESENDE A C D , ARANHA D F . Faster unbalanced private set intersection [M ] . Berlin : Springer , 2018 .
BALDI P , BARONIO R , DE CRISTOFARO E , et al . Countering GATTACA:efficient and secure testing of fully-sequenced human genomes [C ] // The 18th ACM Conference on Computer and communications Security . New York:ACM Press , 2011 : 691 - 702 .
CHEN H , LAINE K , RINDAL P . Fast private set intersection from homomorphic encryption [C ] // The 2017 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2017 :299.
FREEDMAN M J , NISSIM K , PINKAS B . Efficient private matching and set intersection [C ] // Advances in Cryptology-EUROCRYPT . Berlin:Springer , 2004 : 1 - 9 .
INBAR R , OMRI E , PINKAS B . Efficient scalable multiparty private set-intersection via garbled bloom filters [C ] // Security and Cryptography for Networks . Berlin:Springer , 2018 : 235 - 252 .
HUANG Y , CHAPMAN P , EVANS D . Privacy-preserving applications on Smartphones [C ] // 6th USENIX Workshop on Hot Topics in Security . Berkeley:USENIX Association , 2011 : 1 - 6 .
PINKAS B , SCHNEIDER T , TKACHENKO O , et al . Efficient circuit-based PSI with linear communication [C ] // Advances in Cryptology - EUROCRYPT 2019 . Berlin:Springer , 2019 : 122 - 153 .
PINKAS B , SCHNEIDER T , WEINERT C , et al . Efficient circuit-based PSI via Cuckoo Hashing [C ] // EUROCRYPT 2018 . Berlin:Springer , 2018 : 125 - 157 .
HUANG H F , CHANG C C . A new design for efficent t-out-n oblivious transfer scheme [C ] // 19th International Conference on Advanced Information Networking and Applications . Los Alamitos:IEEE Computer Society , 2005 : 28 - 30 .
徐彦蛟 , 李顺东 , 王道顺 , 等 . 基于椭圆曲线公钥系统的不经意传输协议 [J ] . 计算机科学 , 2013 , 40 ( 12 ): 186 - 191 .
XU Y J , LI S D , WANG D S , et al . Oblivious transfer based on elliptic curve public key cryptosystems [J ] . Computer Science , 2013 , 40 ( 12 ): 186 - 191 .
ISHAI Y , KILIAN J , NISSIM K , et al . Extending oblivious transfers efficiently [C ] // Advances in Cryptology - CRYPTO 2003 . Berlin:Springer , 2003 : 145 - 161 .
ASHAROV G , LINDELL Y , SCHNEIDER T , et al . More efficient oblivious transfer and extensions for faster secure computation [C ] // The 2013 ACM SIGSAC Conference on Computer & communications Security . New York:ACM Press , 2013 : 673 - 701 .
CHASE M , MIAO P H . Private set intersection in the Internet setting from lightweight oblivious PRF [C ] // Advances in Cryptology CRYPTO 2020 . Berlin:Springer , 2020 : 34 - 63 .
CIAMPI M , ORLANDI C . Combining private set-intersection with secure two-party computation [C ] // Security and Cryptography for Networks . Berlin:Springer , 2018 :105.
KARAKOÇ F , KÜPÇÜ A . Linear complexity private set intersection for secure two-party protocols [C ] // Cryptology and Network Security . Cham:Springer International Publishing , 2020 : 409 - 429 .
PINKAS B , ROSULEK M , TRIEU N , et al . SpOT-light:lightweight private set intersection from sparse OT extension [C ] // Advances in Cryptology - CRYPTO 2019 . Berlin:Springer , 2019 : 401 - 431 .
PINKAS B , SCHNEIDER T , ZOHNER M . Scalable private set intersection based on OT extension [J ] . ACM Transactions on Privacy and Security , 2018 , 21 ( 2 ): 1 - 35 .
RINDAL P , ROSULEK M . Improved private set intersection against malicious adversaries [C ] // Advances in Cryptology - EUROCRYPT 2017 . Berlin:Springer , 2017 : 235 - 259 .
RINDAL P , ROSULEK M . Malicious-secure private set intersection via dual execution [C ] // The 2017 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2017 : 1229 - 1242 .
GHOSH S , NILGES T . An algebraic approach to maliciously secure private set intersection [C ] // Advances in Cryptology - EUROCRYPT 2019 . Berlin:Springer , 2019 :1064.
KOLESNIKOV V , KUMARESAN R , ROSULEK M , et al . Efficient batched oblivious PRF with applications to private set intersection [C ] // The 2016 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2016 : 818 - 829 .
DONG C Y , CHEN L Q , WEN Z K . When private set intersection meets big data:an efficient and scalable protocol [C ] // The 2013 ACM SIGSAC Conference On Computer & Communications Security . New York:ACM Press , 2013 : 789 - 800 .
GROCE A , RINDAL P , ROSULEK M . Cheaper private set intersection via differentially private leakage [J ] . Proceedings on Privacy Enhancing Technologies , 2019 , 2019 ( 3 ): 6 - 25 .
SHAMIR A . How to share a secret [J ] . Communications of the ACM , 1979 , 22 ( 11 ): 612 - 613 .
CHENG K W , FAN T , JIN Y L , et al . SecureBoost:a lossless federated learning framework [J ] . IEEE Intelligent Systems , 2561 , pp ( 99 ): 1 .
CRAMER R , DAMGÅRD I , MAURER U . General secure multi-party computation from any linear secret-sharing scheme [C ] // Advances in Cryptology-EUROCRYPT 2000 . Berlin:Springer , 2000 : 316 - 334 .
RABIN M O , . Randomized Byzantine generals [C ] // 24th Annual Symposium on Foundations of Computer Science . Piscataway:IEEE Press , 1983 : 403 - 409 .
LYU S , YE J H , YIN S J , et al . Unbalanced private set intersection cardinality protocol with low communication cost [J ] . Future Generation Computer Systems , 2020 , 102 : 1054 - 1061 .
MIAO P H , PATEL S , RAYKOVA M , et al . Two-sided malicious security for private intersection-sum with cardinality [C ] // Advances in Cryptology - CRYPTO 2020 . Berlin:Springer , 2020 : 3 - 33 .
SHI R H , ZHANG M W . A feasible quantum protocol for private set intersection cardinality [J ] . IEEE Access , 2019 , 7 : 105 - 112 .
DONG C Y , LOUKIDES G . Approximating private set union/intersection cardinality with logarithmic complexity [J ] . IEEE Transactions on Information Forensics and Security , 2017 , 12 ( 11 ): 2792 - 2806 .
CERULLI A , CRISTOFARO E , SORIENTE C . Nothing refreshes like a RePSI:reactive private set intersection [C ] // Applied Cryptography and Network Security . Berlin:Springer , 2018 : 280 - 300
ATENIESE G , CRISTOFARO E , TSUDIK G . (if) size matters:size-hiding private set intersection [C ] // Public Key Cryptography . Berlin:Springer , 2011 : 156 - 173 .
YANG Q , LIU Y , CHEN T J , et al . Federated machine learning [J ] . ACM Transactions on Intelligent Systems and Technology , 2019 , 10 ( 2 ): 1 - 19 .
ZHAO Y , LI M , LAI L , et al . Federated learning with non-IID data [J ] . arXiv Preprint,arXiv:1806.00582 , 2018 .
GOETZ J , MALIK K , BUI D , et al . Active federated learning [J ] . arXiv Preprint,arXiv:1909.12641 , 2019 .
KANG J W , XIONG Z H , NIYATO D , et al . Incentive mechanism for reliable federated learning:a joint optimization approach to combining reputation and contract theory [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 6 ): 10700 - 10714 .
YOSHIDA N , NISHIO T , MORIKURA M , et al . Hybrid-FL for wireless networks:cooperative learning mechanism using non-IID data [C ] // IEEE International Conference on Communications . Piscataway:IEEE Press , 2020 : 1 - 7 .
SARIKAYA Y , ERCETIN O . Motivating workers in federated learning:a stackelberg game perspective [J ] . IEEE Networking Letters , 2020 , 2 ( 1 ): 23 - 27 .
WANG S Q , TUOR T , SALONIDIS T , et al . Adaptive federated learning in resource constrained edge computing systems [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 6 ): 1205 - 1221 .
LIU L M , ZHANG J , SONG S H , et al . Client-edge-cloud hierarchical federated learning [C ] // IEEE International Conference on Communications . Piscataway:IEEE Press , 2020 : 1 - 6 .
SHOKRI R , SHMATIKOV V . Privacy-preserving deep learning [C ] // The 22nd ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2015 : 1310 - 1321 .
KONEČNÝ JB , MCMAHAN B , RAMAGE D . Federated optimization:Distributed optimization beyond the datacenter [J ] . arXiv Preprint,arXiv:1511.03575 , 2015 .
LI T , SAHU A K , ZAHEER M , et al . Federated optimization in heterogeneous networks [J ] . arXiv Preprint,arXiv:1812.06127 , 2018 .
CHEN X , CHEN T , SUN H , et al . Distributed training with heterogeneous data:bridging median-and mean-based algorithms [J ] . arXiv Preprint,arXiv:1906.01736 , 2019 .
KARIMIREDDY S P , KALE S , MOHRI M , et al . Scaffold:Stochastic controlled averaging for federated learning [J ] . arXiv Preprint,arXiv:1910.06378 , 2019 .
XIE C , KOYEJO S , GUPTA I . Asynchronous federated optimization [J ] . arXiv Preprint,arXiv:1903.03934 , 2019 .
LI D , WANG J . FedMD:Heterogenous federated learning via model distillation [J ] . arXiv Preprint,arXiv:1910.03581 , 2019 .
LIU L M , ZHANG J , SONG S H , et al . Edge-assisted hierarchical federated learning with non-IID data [J ] . arXiv Preprint,arXiv:1905.06641 , 2019 .
RAMANAN P , NAKAYAMA K . BAFFLE:blockchain based aggregator free federated learning [C ] // 2020 IEEE International Conference on Blockchain . Piscataway:IEEE Press , 2020 : 72 - 81 .
ROY A G , SIDDIQUI S , PÖLSTERL S , et al . BrainTorrent:a peer-to-peer environment for decentralized federated learning [J ] . arXiv Preprint,arXiv:1905.06731 , 2019 .
LIU Y , KANG Y , ZHANG X W , et al . A communication efficient collaborative learning framework for distributed features [J ] . arXiv Preprint,arXiv:1912.11187 , 2019 .
YAO X , HUANG C F , SUN L F . Two-stream federated learning:reduce the communication costs [C ] // 2018 IEEE Visual Communica tions and Image Processing . Piscataway:IEEE Press , 2018 : 1 - 4 .
STICH S U . Local SGD converges fast and communicates little [J ] . arXiv Preprint,arXiv:1805.09767 , 2018 .
WANG J Y , JOSHI G . Adaptive communication strategies to achieve the best error-runtime trade-off in local-update SGD [J ] . arXiv Preprint,arXiv:1810.08313 , 2018 .
MOHRI M , SIVEK G , SURESH A T . Agnostic federated learning [J ] . arXiv Preprint,arXiv:1902.00146 , 2019 .
ALISTARH D , GRUBIC D , LI J , et al . QSGD:communication-efficient SGD via gradient quantization and encoding [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2017 : 1709 - 1720 .
KHALED A , RICHTÁRIK P . Gradient descent with compressed iterates [J ] . arXiv Preprint,arXiv:1909.04716 , 2019 .
VOGELS T , KARIMIREDDY S P , JAGGI M . PowerSGD:practical low-rank gradient compression for distributed optimization [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2019 : 14259 - 14268 .
BERNSTEIN J , ZHAO J , AZIZZADENESHELI K , et al . SignSGD with majority vote is communication efficient and fault tolerant [J ] . arXiv Preprint,arXiv:1810.05291 , 2018 .
JIANG Y H , KONEČNÝ J , RUSH K , et al . Improving federated learning personalization via model agnostic meta learning [J ] . arXiv Preprint,arXiv:1909.12488 , 2019 .
SHEN T , ZHANG J , JIA X K , et al . Federated mutual learning [J ] . arXiv Preprint,arXiv:2006.16765 , 2020 .
SAVAZZI S , NICOLI M , RAMPA V . Federated learning with cooperating devices:a consensus approach for massive IoT networks [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 5 ): 4641 - 4654 .
SATTLER F , WIEDEMANN S,MÜLLER K R , et al . Robust and communication-efficient federated learning from non-I.I.D.data [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2019 , 31 ( 9 ): 3400 - 3413 .
KANG J W , XIONG Z H , NIYATO D , et al . Incentive design for efficient federated learning in mobile networks:a contract theory approach [C ] // 2019 IEEE VTS Asia Pacific Wireless Communications Symposium . Piscataway:IEEE Press , 2019 : 1 - 5 .
MCMAHAN B , MOORE E , RAMAGE D , et al . Communication-efficient learning of deep networks from decentralized data [C ] // Artificial Intelligence and Statistics . New York:ACM Press , 2017 : 1273 - 1282 .
KISS Á , LIU J , SCHNEIDER T , et al . Private set intersection for unequal set sizes with mobile applications [J ] . Proceedings on Privacy Enhancing Technologies , 2017 , 2017 ( 4 ): 177 - 197 .
NASR M , SHOKRI R , HOUMANSADR A . Improving deep learning with differential privacy using gradient encoding and denoising [J ] . arXiv Preprint,arXiv:2007.11524 , 2020 .
MOHASSEL P , RINDAL P . ABY3:a mixed protocol framework for machine learning [C ] // The 2018 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2018 : 35 - 52 .
何雯 , 白翰茹 , 李超 . 基于联邦学习的企业数据共享探讨 [J ] . 信息与电脑(理论版) , 2020 , 32 ( 8 ): 173 - 176 .
HE W , BAI H R , LI C . Research on enterprise data sharing based on federated learning [J ] . China Computer & Communication , 2020 , 32 ( 8 ): 173 - 176 .
ZHANG C , LI S , XIA J , et al . Batchcrypt:efficient homomorphic encryption for cross-silo federated learning [C ] // USENIX Annual Technical Conference,Berkeley:USENIX Association , 2020 : 493 - 506 .
FRIEDMAN J , HASTIE T , TIBSHIRANI R . Additive logistic regression:a statistical view of boosting (with discussion and a rejoinder by the authors) [J ] . The Annals of Statistics , 2000 , 28 ( 2 ): 337 - 407 .
GANG L , CHAWATHE S S . Privacy-preserving inter-database operations [C ] // 2nd Symposium on Intelligence and Security Informatics . Berlin:Springer , 2004 : 66 - 82 .
ALEDHARI M , RAZZAK R , PARIZI R M , et al . Federated learning:a survey on enabling technologies,protocols,and applications [J ] . IEEE Access , 2020 , 8 : 699 - 725 .
LE H Q , NGUYEN M N , HONGF C S . A federated learning for+mage classification with heterogeneous data [J ] . Journal of Korea Information Science Society , 2020 : 352 - 354 .
WANG H Y , SREENIVASAN K , RAJPUT S , et al . Attack of the tails:yes,you really can backdoor federated learning [J ] . arXiv Preprint,arXiv:2007.05084 , 2020 .
YU B , QIU W Y , CHEN C , et al . SubMito-XGBoost:predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting [J ] . Bioinformatics , 2020 , 36 ( 4 ): 1074 - 1081 .
MCMAHAN H B , ANDREW G . A general approach to adding differential privacy to iterative training procedures [J ] . arXiv Preprint,arXiv:1812.06210 , 2018 .
AUGENSTEIN S , MCMAHAN H B , RAMAGE D , et al . Generative models for effective ML on private,decentralized datasets [J ] . arXiv Preprint,arXiv:1911.06679 , 2019 .
GONZALEZ E , LEDIJU BELL M A . A GPU approach to real-time coherence-based photoacoustic imaging and its application to photoacoustic visual servoing [J ] . Photons Plus Ultrasound:Imaging and Sensing, , 2020 , 1124 :1124054.
LI W Q , MILLETARÌ F , XU D G , et al . Privacy-preserving federated brain tumour segmentation [C ] // Machine Learning in Medical Imaging . Berlin:Springer , 2019 : 133 - 141 .
RANGAN R , TURAKHIA N , JOLY A . Corrections to “countering load-to-use stalls in the NVIDIA Turing GPU” [J ] . IEEE Micro , 2021 , 41 ( 1 ): 83 .
WANG Z S , BANAWAN K , ULUKUS S . Multi-party private set intersection:an information-theoretic approach [J ] . IEEE Journal on Selected Areas in Information Theory , 2021 , 2 ( 1 ): 366 - 379 .
KOLESNIKOV V , MATANIA N , PINKAS B , et al . Practical multi-party private set intersection from symmetric-key techniques [C ] // The 2017 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2017 : 257 - 272 .
ALI M , MOHAJERI J , SADEGHI M R , et al . Attribute-based fine-grained access control for outscored private set intersection computation [J ] . Information Sciences , 2020 , 536 : 222 - 243 .
ZHANG Y , DUCHI J C , WAINWRIGHT M J . Communication- efficient algorithms for statistical optimization [J ] . The Journal of Machine Learning Research , 2013 , 14 ( 1 ): 3321 - 3363 .
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [C ] // International Conference on Neural Information Processing Systems . Berlin:Springer , 2014 : 2672 - 2680 .
LIU Y , PENG J L , YU J J Q , et al . PPGAN:privacy-preserving generative adversarial network [C ] // 2019 IEEE 25th International Conference on Parallel and Distributed Systems . Piscataway:IEEE Prss , 2019 : 985 - 989 .
XIE L Y , LIN K X , WANG S , et al . Differentially private generative adversarial network [J ] . arXiv Preprint,arXiv:1802.06739 , 2018 .
DUCHI J C , JORDAN M I , WAINWRIGHT M J . Local privacy,data processing inequalities,and statistical minimax rates [J ] . arXiv Preprint,arXiv:1302.3203 , 2013 .
QIN Z , YU T , YANG Y , et al . Generating synthetic decentralized social graphs with local differential privacy [C ] // The 2017 ACM SIGSAC Conference on Computer and Communications Security . New York:ACM Press , 2017 : 425 - 438 .
张佳程 , 彭佳 , 王雷 . 大数据环境下的本地差分隐私图信息收集方法 [J ] . 信息网络安全 , 2020 , 20 ( 6 ): 44 - 56 .
ZHANG J C , PENG J , WANG L . A graph information collection method based on local differential privacy in big data environment [J ] . Netinfo Security , 2020 , 20 ( 6 ): 44 - 56 .
0
浏览量
1122
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构