浏览全部资源
扫码关注微信
1. 电子信息系统复杂电磁环境效应国家重点实验室,河南 洛阳 471003
2. 同济大学电子与信息工程学院,上海 201804
3. 同济大学软件学院,上海 201804
[ "冯蕴天(1990- ),男,河南洛阳人,电子信息系统复杂电磁环境效应国家重点实验室工程师,主要研究方向为电磁大数据和智能博弈推演。" ]
[ "吴霞(1982- ),女,上海人,博士,同济大学副教授,主要研究方向为计算电磁学、通信工程。" ]
[ "许雄(1985- ),男,福建莆田人,电子信息系统复杂电磁环境效应国家重点实验室工程师,主要研究方向为复杂电磁环境和体系对抗仿真。" ]
[ "张荣庆(1985- ),男,河南洛阳人,博士,同济大学副教授,主要研究方向为无线网络优化和人工智能。" ]
网络出版日期:2021-04,
纸质出版日期:2021-04-25
移动端阅览
冯蕴天, 吴霞, 许雄, 等. 基于深度学习的电离层参数预测研究[J]. 通信学报, 2021,42(4):202-206.
Yuntian FENG, Xia WU, Xiong XU, et al. Research on ionospheric parameters prediction based on deep learning[J]. Journal on communications, 2021, 42(4): 202-206.
冯蕴天, 吴霞, 许雄, 等. 基于深度学习的电离层参数预测研究[J]. 通信学报, 2021,42(4):202-206. DOI: 10.11959/j.issn.1000-436x.2021097.
Yuntian FENG, Xia WU, Xiong XU, et al. Research on ionospheric parameters prediction based on deep learning[J]. Journal on communications, 2021, 42(4): 202-206. DOI: 10.11959/j.issn.1000-436x.2021097.
对于电离层参数预测,通过长短期记忆(LSTM)的预测神经网络建模实现电离层参数的短期和日均值预测。使用逐点预测和序列预测2种方法,并采用多维预测和经验模态分解(EMD)算法优化,预测电离层参数的每小时和每天的变化规律。实验结果验证了所提优化算法在提高预测电离层参数预测精度上的可行性。
For ionospheric parameter prediction
the short-term and daily mean value prediction of ionospheric parameters was established by long short-term memory (LSTM) predictive neural network modeling.Two methods of point-by-point prediction and sequence prediction were utilized.Furthermore
in order to predict the hourly and daily changes of ionospheric parameters
the proposed scheme was optimized by multidimensional prediction and empirical mode decomposition (EMD) algorithm.Finally
the feasibility of the proposed optimization algorithm in improving the prediction accuracy of ionospheric parameters is verified.
周倜 . 海战场电磁态势生成若干关键技术研究 [D ] . 哈尔滨:哈尔滨工程大学 , 2013 .
ZHOU T . Research on several key techniques of electromagnetic situation generation in sea battlefield [D ] . Harbin:Harbin Engineering University , 2013 .
高敬帆 , 赵海生 , 徐朝辉 , 等 . 拉萨地区电离层长期变化特性研究 [J ] . 电波科学学报 , 2018 , 33 ( 6 ): 701 - 707 .
GAO J F , ZHAO H S , XU Z H , et al . Long-term ionospheric characteristics over Lhasa [J ] . Chinese Journal of Radio Science , 2018 , 33 ( 6 ): 701 - 707 .
张雯鹤 , 黄国策 , 董淑福 , 等 . 基于LSTM的短波频率参数预测 [J ] . 空军工程大学学报(自然科学版) , 2019 , 20 ( 3 ): 59 - 64 .
ZHANG W H , HUANG G C , DONG S F , et al . A prediction of frequency parameters based on LSTM for high frequency communication [J ] . Journal of Air Force Engineering University (Natural Science Edition) , 2019 , 20 ( 3 ): 59 - 64 .
孔庆颜 , 柳文 , 焦培南 , 等 . 电离层 f 0 F 2 参数提前 24 小时预测 [J ] . 空间科学学报 , 2009 , 29 ( 4 ): 377 - 382 .
KONG Q Y , LIU W , JIAO P N , et al . Twenty-four hour ahead prediction of f 0 F 2 [J ] . Chinese Journal of Space Science , 2009 , 29 ( 4 ): 377 - 382 .
HAJIHASSANI M , JAHED A D , MARTO A , et al . Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm [J ] . Bulletin of Engineering Geology and the Environment , 2015 , 74 ( 3 ): 873 - 886 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
HUANG N E , SHEN Z , LONG S R , et al . The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J ] . Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences , 1998 , 454 ( 1971 ): 903 - 995 .
王昭斌 , 胡伍生 , 韩理想 , 等 . 基于经验模态分解和BP神经网络的地铁沉降预测模型研究 [J ] . 现代测绘 , 2017 , 40 ( 5 ): 8 - 11 .
WANG Z B , HU W S , HAN L X , et al . The study of the deformation of subway based on the empirical mode decomposition and back propagation neutral network [J ] . Modern Surveying and Mapping , 2017 , 40 ( 5 ): 8 - 11 .
刘鑫 . 基于机器学习的短期电力负荷预测方法研究 [D ] . 北京:北京邮电大学 , 2019 .
LIU X . Research on short-term load forecasting methods based on machine learning [D ] . Beijing:Beijing University of Posts and Telecommunications , 2019 .
DIEDERIK K , JIMMY B A . Adam:a method for stochastic optimization [J ] . arXiv Preprint,arXiv:1412.6980 , 2014 .
0
浏览量
382
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构