浏览全部资源
扫码关注微信
1. 贵州大学计算机科学与技术学院公共大数据国家重点实验室,贵州 贵阳 550025
2. 中央财经大学信息学院,北京 100081
3. 贵州大学密码学与数据安全研究所,贵州 贵阳 550025
4. 兰州理工大学计算机与通信学院,甘肃 兰州 730050
5. 贵州省计量测试院,贵州 贵阳 550000
[ "高胜(1987- ),男,湖北黄冈人,博士,中央财经大学副教授、硕士生导师,主要研究方向为数据安全与隐私保护、区块链技术及应用等" ]
[ "向康(1993- ),男,湖北仙桃人,贵州大学硕士生,主要研究方向为委托机器学习、委托计算与博弈论" ]
[ "田有亮(1982- ),男,贵州六盘水人,博士,贵州大学教授、博士生导师,主要研究方向为算法博弈论、密码学与安全协议、大数据安全与隐私保护等" ]
[ "谭伟杰(1981- ),男,陕西合阳人,博士,贵州大学讲师,主要研究方向为通信信号处理、通信网络安全、阵列信号处理" ]
[ "冯涛(1970- ),男,甘肃临洮人,博士,兰州理工大学研究员、博士生导师,主要研究方向为网络与信息安全、密码学" ]
[ "吴晓雪(1977- ),男,江苏南通人,贵州省计量测试院工程师,主要研究方向为能源计量" ]
网络出版日期:2021-05,
纸质出版日期:2021-05-25
移动端阅览
高胜, 向康, 田有亮, 等. 基于BCP的联合委托学习模型及协议[J]. 通信学报, 2021,42(5):137-148.
Sheng GAO, Kang XIANG, Youliang TIAN, et al. BCP-based joint delegation learning model and protocol[J]. Journal on communications, 2021, 42(5): 137-148.
高胜, 向康, 田有亮, 等. 基于BCP的联合委托学习模型及协议[J]. 通信学报, 2021,42(5):137-148. DOI: 10.11959/j.issn.1000-436x.2021089.
Sheng GAO, Kang XIANG, Youliang TIAN, et al. BCP-based joint delegation learning model and protocol[J]. Journal on communications, 2021, 42(5): 137-148. DOI: 10.11959/j.issn.1000-436x.2021089.
为了实现数据安全共享的同时减少客户端在数据挖掘过程中的计算成本,基于 BCP 同态加密算法提出了联合委托学习模型及协议。首先,针对决策树模型的安全构造提出了基于虚假记录的隐私保护方法。其次,根据数据垂直分布与水平分布的情况,基于隐私保护委托点积算法和隐私保护委托求熵算法提出了相应的委托学习协议。最后,给出了委托学习协议及决策树模型结构的安全性证明和性能分析。结果表明,基于虚假记录的隐私保护方法不会影响最终模型的构建,并且各客户端最终获得的模型与真实数据构建的模型具有一致性。
In order to realize data security sharing and reduce the computing costs of clients in data mining process
a joint delegation learning model and protocol based on BCP homomorphic encryption algorithm was proposed.Firstly
a privacy preserving method based on false records was proposed for the security of decision tree model.Secondly
in view of the vertical and horizontal distribution of data
the corresponding delegation learning protocols based on privacy preserving delegation dot product algorithm and privacy preserving delegation entropy algorithm was proposed.Finally
the security proof and the performance analysis of delegation learning protocols and decision tree model structure were given.The results show that the privacy protection method based on false records does not affect the final model construction
and the final model obtained by each client is the same as that constructed by real data.
JIN H , LUO Y , LI P L , et al . A review of secure and privacy-preserving medical data sharing [J ] . IEEE Access , 2019 , 7 : 61656 - 61669 .
SUN Y , YIN L H , SUN Z , et al . An IoT data sharing privacy preserving scheme [C ] // IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops . Piscataway:IEEE Press , 2020 : 984 - 990 .
ZHAO C , ZHAO S N , ZHAO M H , et al . Secure multi-party computation:theory,practice and applications [J ] . Information Sciences , 2019 , 476 : 357 - 372 .
VU D H , LUONG T D , HO T B . An efficient approach for secure multi-party computation without authenticated channel [J ] . Information Sciences , 2020 , 527 : 356 - 368 .
REDDY G T , REDDY M P K , LAKSHMANNA K , et al . Analysis of dimensionality reduction techniques on big data [J ] . IEEE Access , 2020 , 8 : 54776 - 54788 .
WANG C , WANG A D , XU J , et al . Outsourced privacy-preserving decision tree classification service over encrypted data [J ] . Journal of Information Security and Applications , 2020 , 53 : 102517 .
OLAKANMI O O , DADA A . An efficient privacy-preserving approach for secure verifiable outsourced computing on untrusted platforms [J ] . International Journal of Cloud Applications and Computing , 2019 , 9 ( 2 ): 79 - 98 .
MANIKANDAN V , PORKODI V , MOHAMMED A S , et al . Privacy preserving data mining using threshold based fuzzy c-means clustering [J ] . ICTACT Journal on Soft Computing , 2018 , 9 ( 1 ): 1813 - 1816 .
TEO S G , CAO J , LEE V C S . DAG:a general model for privacy-preserving data mining [J ] . IEEE Transactions on Knowledge and Data Engineering , 2018 , 32 ( 1 ): 40 - 53 .
AGRAWAL R , SRIKANT R . Privacy-preserving data mining [C ] // 2000 ACM SIGMOD International Conference on Management of Data.Texas . New York:ACM Press , 2000 : 439 - 450 .
KARGUPTA H , DATTA S , WANG Q , et al . On the privacy preserving properties of random data perturbation techniques [C ] // Third IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2003 : 99 - 106 .
KARGUPTA H , DATTA S , WANG Q , et al . Random-data perturbation techniques and privacy-preserving data mining [J ] . Knowledge and Information Systems , 2005 , 7 ( 4 ): 387 - 414 .
BU S , LAKSHMANAN L V S , NG R T , et al . Preservation of patterns and input-output privacy [C ] // 2007 IEEE 23rd International Conference on Data Engineering . Piscataway:IEEE Press , 2007 : 696 - 705 .
HAMADA K , HASEGAWA S , MISAWA K , et al . Privacy-preserving fisher’s exact test for genome-wide association study [C ] // International Workshop on Genome Privacy and Security . Piscataway:IEEE Press , 2017 : 99 - 102 .
BOST R , POPA R A , TU S , et al . Machine learning classification over encrypted data [C ] // Network and Distributed System Security Symposium . Piscataway:IEEE Press , 2015 : 4324 - 4325 .
WU D J , FENG T , NAEHRIG M , et al . Privately evaluating decision trees and random forests [J ] . Proceedings on Privacy Enhancing Technologies , 2016 , 2016 ( 4 ): 335 - 355 .
BACKES M , BERRANG P , BIEG M , et al . Identifying personal DNA methylation profiles by genotype inference [C ] // 2017 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2017 : 957 - 976 .
ICHIKAWA A , OGATA W , HAMADA K , et al . Efficient secure multi-party protocols for decision tree classification [C ] // Australasian Conference on Information Security and Privacy . Piscataway:IEEE Press , 2019 : 362 - 380 .
ZHENG Y F , DUAN H Y , WANG C . Towards secure and efficient outsourcing of machine learning classification [C ] // European Symposium on Research in Computer Security . Berlin:Springer , 2019 : 22 - 40 .
LI P , LI J , HUANG Z G , et al . Privacy-preserving outsourced classification in cloud computing [J ] . Cluster Computing , 2018 , 21 ( 1 ): 277 - 286 .
LIU L , SU J , CHEN R , et al . Secure and fast decision tree evaluation on outsourced cloud data [C ] // International Conference on Machine Learning for Cyber Security . Piscataway:IEEE Press , 2019 : 361 - 377 .
LI Y , JIANG Z L , YAO L , et al . Outsourced privacy-preserving C4.5 decision tree algorithm over horizontally and vertically partitioned dataset among multiple parties [J ] . Cluster Computing , 2019 , 22 ( 1 ): 1581 - 1593 .
PHU V N , TRAN V T N , CHAU V T N , et al . A decision tree using ID3 algorithm for English semantic analysis [J ] . International Journal of Speech Technology , 2017 , 20 ( 3 ): 593 - 613 .
0
浏览量
475
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构