浏览全部资源
扫码关注微信
1. 南昌航空大学软件学院,江西 南昌 330063
2. 南昌航空大学信息工程学院,江西 南昌 330063
[ "舒坚(1964− ),男,江西南昌人,南昌航空大学教授、硕士生导师,主要研究方向为分布式系统、软件工程等" ]
[ "王启宁(1996− ),男,河北石家庄人,南昌航空大学硕士生,主要研究方向为分布式系统" ]
[ "刘琳岚(1968− ),女,湖南东安人,南昌航空大学教授、硕士生导师,主要研究方向为无线传感器网络、分布式系统等" ]
网络出版日期:2021-07,
纸质出版日期:2021-07-25
移动端阅览
舒坚, 王启宁, 刘琳岚. 基于深度图嵌入的无人机自组网链路预测[J]. 通信学报, 2021,42(7):137-149.
Jian SHU, Qining WANG, Linlan LIU. UAV ad hoc network link prediction based on deep graph embedding[J]. Journal on communications, 2021, 42(7): 137-149.
舒坚, 王启宁, 刘琳岚. 基于深度图嵌入的无人机自组网链路预测[J]. 通信学报, 2021,42(7):137-149. DOI: 10.11959/j.issn.1000-436x.2021083.
Jian SHU, Qining WANG, Linlan LIU. UAV ad hoc network link prediction based on deep graph embedding[J]. Journal on communications, 2021, 42(7): 137-149. DOI: 10.11959/j.issn.1000-436x.2021083.
针对无人机自组网的拓扑时变、节点移动、间歇性连接等特点,提出用时序化图嵌入模型对预处理后的无人机自组网进行表征,基于线性概率计算采样间隔以提高采样效率,将网络结构特征映射为节点间关系,并采用对抗训练提取节点上下文语义特征。利用长短期记忆网络提取无人机自组网的时序特征,预测下一时刻的网络连接情况。采用AUC、MAP、Error Rate作为评价指标。Ns-3仿真实验表明,与Node2vec、DDNE、E-LSTM-D等方法相比,所提方法具有更高的预测准确率。
Aiming at the characteristics of the UAV ad hoc network (UAANET)
such as topological temporal-varying
node mobility and intermittent connection
a temporal graph embedding model was proposed to present the preprocessed UAANET.To improve the sampling efficiency
the sampling interval was calculated based on linear probability.The network structure features were mapped to the relationship between nodes
and the contextual semantic features of nodes were extracted by adversarial training.With the help of long and short-term memory network
the temporal characteristics of the UAANET were extracted to predict the connection at the next moment.AUC
MAP
and Error Rate were employed as evaluation indexes.The simulation experiments based on NS-3 show that compared with Node2vec
DDNE and E-LSTM-D
the proposed method has a better accuracy.
ZENG Y , ZHANG R , LIM T J . Wireless communications with unmanned aerial vehicles:opportunities and challenges [J ] . IEEE Communications Magazine , 2016 , 54 ( 5 ): 36 - 42 .
任佳智 , 田辉 , 范绍帅 , 等 . 基于用户偏好预测的无人机部署和缓存策略 [J ] . 通信学报 , 2020 , 41 ( 6 ): 1 - 13 .
REN J Z , TIAN H , FAN S S , et al . UAV deployment and caching scheme based on user preference prediction [J ] . Journal on Communications , 2020 , 41 ( 6 ): 1 - 13 .
熊永平 , 孙利民 , 牛建伟 , 等 . 机会网络 [J ] . 软件学报 , 2009 , 20 ( 1 ): 124 - 137 .
XIONG Y P , SUN L M , NIU J W , et al . Opportunistic networks [J ] . Journal of Software , 2009 , 20 ( 1 ): 124 - 137 .
HE Y X , TANG X , ZHANG R N , et al . A course-aware opportunistic routing protocol for FANETs [J ] . IEEE Access , 2019 , 7 : 144303 - 144312 .
NAGADIVYA S , MANOHARAN R . Energy efficient Markov prediction based opportunistic routing (Eempor) for wireless sensor networks [C ] // 2019 IEEE International Conference on System,Computation,Automation and Networking . Piscataway:IEEE Press , 2019 : 1 - 6 .
吕琳媛 . 复杂网络链路预测 [J ] . 电子科技大学学报 , 2010 , 39 ( 5 ): 651 - 661 .
LYU L Y . Link prediction on complex networks [J ] . Journal of University of Electronic Science and Technology of China , 2010 , 39 ( 5 ): 651 - 661 .
ISMAIL G , SULE G , ZEHRA C . Link prediction using time series of neighborhood-based node similarity scores [J ] . Data Mining and Knowledge Discovery , 2016 , 30 ( 1 ): 147 - 180 .
CHUAN P M , SON L H , ALI M , et al . Link prediction in co-authorship networks based on hybrid content similarity metric [J ] . Applied Intelligence , 2018 , 48 ( 8 ): 2470 - 2486 .
RAFIEE S , SALAVATI C , ABDOLLAHPOURI A . CNDP:link prediction based on common neighbors degree penalization [J ] . Physica A:Statistical Mechanics and Its Applications , 2020 ,539:122950.
PAN L , ZHOU T , LYU L , et al . Predicting missing links and identifying spurious links via likelihood analysis [J ] . Scientific Reports , 2016 , 6 ( 1 ): 1 - 10 .
PECH R , HAO D , LEE Y L , et al . Link prediction via linear optimization [J ] . Physica A:Statistical Mechanics and Its Applications , 2019 , 528 ( 8 ): 121319 - 121348 .
WANG P , XU B W , WU Y R , et al . Link prediction in social networks:the state-of-the-art [J ] . Science China Information Sciences , 2015 , 58 ( 1 ): 1 - 38 .
WANG D X , CUI P , ZHU W W . Structural deep network embedding [C ] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 1225 - 1234 .
PAN S R , HU R Q , LONG G D , et al . Adversarially regularized graph autoencoder for graph embedding [C ] // Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence . Saarland:DBLP , 2018 : 2609 - 2615 .
LI T S , ZHANG J W , YU P S , et al . Deep dynamic network embedding for link prediction [J ] . IEEE Access , 2018 , 6 : 29219 - 29230 .
CHEN J Y , ZHANG J , XU X H , et al . E-LSTM-D:a deep learning framework for dynamic network link prediction [J ] . IEEE Transactions on Systems,Man,and Cybernetics:Systems , 2021 , 51 ( 6 ): 3699 - 3712 .
PEROZZI B , AL-RFOU R ,, SKIENA S . DeepWalk:online learning of social representations [C ] // Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2014 : 701 - 710 .
TANG J , QU M , WANG M Z , et al . LINE:large-scale information network embedding [C ] // Proceedings of the 24th International Conference on World Wide Web . New York:ACM Press , 2015 : 1067 - 1077 .
GROVER A , LESKOVEC J . Node2vec:scalable feature learning for networks [C ] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 855 - 864 .
DAI Q , SHEN X , ZHANG L , et al . Adversarial training methods for network embedding [C ] // The World Wide Web Conference 2019 . New York:ACM Press , 2019 : 329 - 339 .
DU L , WANG Y , SONG G J , et al . Dynamic network embedding:an extended approach for skip-gram based network embedding [C ] // Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence . Saarland:DBLP , 2018 : 2086 - 2092 .
KIPF T , FETAYA E , WANG K C , et al . Neural relational inference for interacting systems [C ] // International Conference on Machine Learning . Stockholm:PMLR , 2018 : 2688 - 2697 .
BOUACHIR O , ABRASSART A , GARCIA F , et al . A mobility model for UAV ad hoc network [C ] // 2014 International Conference on Unmanned Aircraft Systems . Piscataway:IEEE Press , 2014 : 383 - 388 .
0
浏览量
590
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构