浏览全部资源
扫码关注微信
1. 广西大学计算机与电子信息学院,广西 南宁 530004
2. 广西多媒体通信与网络技术重点实验室,广西 南宁 530004
3. 广西高校并行分布式计算技术重点实验室,广西 南宁 530004
[ "吕品(1983- ),男,山东滨州人,博士,广西大学副研究员、硕士生导师,主要研究方向为无线网络、物联网、人工智能等。" ]
[ "许嘉(1984- ),女,山东荣成人,博士,广西大学副教授、硕士生导师,主要研究方向为大数据分析与处理、人工智能等。" ]
[ "李陶深(1957- ),男,广西南宁人,博士,广西大学教授、博士生导师,主要研究方向为无线网络、无线携能通信、网络信息安全、大数据处理等。" ]
[ "徐文彪(1997- ),男,湖南常德人,广西大学硕士生,主要研究方向为边缘计算、自动驾驶等。" ]
网络出版日期:2021-03,
纸质出版日期:2021-03-25
移动端阅览
吕品, 许嘉, 李陶深, 等. 面向自动驾驶的边缘计算技术研究综述[J]. 通信学报, 2021,42(3):190-208.
Pin LYU, Jia XU, Taoshen LI, et al. Survey on edge computing technology for autonomous driving[J]. Journal on communications, 2021, 42(3): 190-208.
吕品, 许嘉, 李陶深, 等. 面向自动驾驶的边缘计算技术研究综述[J]. 通信学报, 2021,42(3):190-208. DOI: 10.11959/j.issn.1000-436x.2021045.
Pin LYU, Jia XU, Taoshen LI, et al. Survey on edge computing technology for autonomous driving[J]. Journal on communications, 2021, 42(3): 190-208. DOI: 10.11959/j.issn.1000-436x.2021045.
边缘计算在自动驾驶的环境感知和数据处理方面有着极其重要的应用。自动驾驶汽车可以通过从边缘节点获得环境信息来扩大自身的感知范围,也可以向边缘节点卸载计算任务以解决计算资源不足的问题。相比于云计算,边缘计算避免了长距离数据传输所导致的高时延,能给自动驾驶车辆提供更快速的响应,并且降低了主干网络的负载。基于此,首先介绍了基于边缘计算的自动驾驶汽车协同感知和任务卸载技术及相关挑战性问题,然后对协同感知和任务卸载技术的研究现状进行了分析总结,最后讨论了该领域有待进一步研究的问题。
Edge computing plays an extremely important role in the environment perception and data processing of autonomous driving.Autonomous driving vehicles can expand their perception scope by obtaining environmental information from edge nodes
and can also deal with the problem of insufficient computing resources by offloading tasks to edge nodes.Compared with cloud computing
edge computing avoids high latency caused by long-distance data transmission
and provides autonomous driving vehicles with faster responses
and relieves the traffic load of the backbone network.Firstly
the edge computing-based cooperative perception and task offloading technologies for autonomous vehicles were introduced firstly
and related challenging issues were also proposed.Then the state-of-the-art of cooperative perception and task offloading technologies were analyzed and summarized.Finally
the problems need to be further studied in this field were discussed.
LIU S S , TANG J , ZHANG Z , et al . Computer architectures for autonomous driving [J ] . Computer , 2017 , 50 ( 8 ): 18 - 25 .
ASHWIN A , PETER S , FAN B . Adaptive cloud offloading for vehicular applications [C ] // IEEE Vehicular Networking Conference . Piscataway:IEEE Press , 2016 : 1 - 8 .
MA B J , XIU L Y , ZHU K L , et al . An intelligent cooperative vision perception system for connected vehicles via IPv6 [C ] // IEEE/CIC International Conference on Communications in China . Piscataway:IEEE Press , 2018 : 485 - 489 .
施巍松 , 张星洲 , 王一帆 , 等 . 边缘计算:现状与展望 [J ] . 计算机研究与发展 , 2019 , 56 ( 1 ): 69 - 89 .
SHI W S , ZHANG X Z , WANG Y F , et al . Edge computing:state-of-the-art and future directions [J ] . Journal of Computer Research and Development , 2019 , 56 ( 1 ): 69 - 89 .
ABBOUD K , OMAR H A , ZHUANG W H . Interworking of DSRC and cellular network technologies for V2X communications:a survey [J ] . IEEE Transactions on Vehicular Technology , 2016 , 65 ( 12 ): 9457 - 9470 .
任开明 , 李纪舟 , 刘玲艳 , 等 . 车联网通信技术发展现状及趋势研究 [J ] . 通信技术 , 2015 , 48 ( 5 ): 507 - 513 .
REN K M , LI J Z , LIU L Y , et al . Development status and tendency of IoV communication technology [J ] . Communications Technology , 2015 , 48 ( 5 ): 507 - 513
张燕咏 , 张莎 , 张昱 , 等 . 基于多模态融合的自动驾驶感知及计算 [J ] . 计算机研究与发展 , 2020 , 57 ( 9 ): 1781 - 1799 .
ZHANG Y Y , ZHANG S , ZHANG Y , et al . Multi-modality fusion perception and computing in autonomous driving [J ] . Journal of Computer Research and Development , 2020 , 57 ( 9 ): 1781 - 1799 .
KIM S W , QIN B X , CHONG Z J , et al . Multivehicle cooperative driving using cooperative perception:design and experimental validation [J ] . IEEE Transactions on Intelligent Transportation Systems , 2015 , 16 ( 2 ): 663 - 680 .
KIM S W , LIU W , ANG M H , et al . The impact of cooperative perception on decision making and planning of autonomous vehicles [J ] . IEEE Intelligent Transportation Systems Magazine , 2015 , 7 ( 3 ): 39 - 50 .
GUNTHER H J , MENNENGA B , TRAUER O , et al . Realizing collective perception in a vehicle [C ] // IEEE Vehicular Networking Conference . Piscataway:IEEE Press , 2016 : 1 - 8 .
GUNTHER H J , TRAUER O , WOLF L . The potential of collective perception in vehicular ad-hoc networks [C ] // The 14th International Conference on ITS Telecommunications . Piscataway:IEEE Press , 2015 : 1 - 5 .
CALVO J A L , MATHAR R . A multi-level cooperative perception scheme for autonomous vehicles [C ] // The 15th International Conference on ITS Telecommunications . Piscataway:IEEE Press , 2017 : 1 - 5 .
WANG Y C , VECIANA G D , SHIMIZU T , et al . Deployment and performance of infrastructure to assist vehicular collaborative sensing [C ] // The 87th Vehicular Technology Conference . Piscataway:IEEE Press , 2018 : 1 - 5 .
WEN T P , XIAO Z Y , JIANG K , et al . High precision target positioning method for RSU in cooperative perception [C ] // The 21st International Workshop on Multimedia Signal Processing . Piscataway:IEEE Press , 2019 : 1 - 6 .
LIN S C , ZHANG Y Q , HSU C H , et al . The architectural implications of autonomous driving:constraints and acceleration [J ] . ACM Sigplan Notices , 2018 , 53 ( 2 ): 751 - 766 .
WEI S G , YU D , GUO C L , et al . Survey of connected automated vehicle perception mode:from autonomy to interaction [J ] . IET Intelligent Transport System , 2019 , 13 ( 3 ): 495 - 505 .
FUKATSU R , SAKAGUCHI K . Millimeter-wave V2V communications with cooperative perception for automated driving [C ] // The 89th Vehicular Technology Conference . Piscataway:IEEE Press , 2019 : 1 - 5 .
SAKAGUCHI K , FUKATSU R . Cooperative perception realized by millimeter-wave V2V for safe automated driving [C ] // Asia-Pacific Microwave Conference . Piscataway:IEEE Press , 2018 : 180 - 182 .
WANG Y C , VECIANA G D , SHIMIZU T , et al . Performance and scaling of collaborative sensing and networking for automated driving applications [C ] // International Conference on Communications Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
THANDAVARAYAN G , SEPULCRE M , GOZALVEZ J . Analysis of message generation rules for collective perception in connected and automated driving [C ] // Intelligent Vehicles Symposium . Piscataway:IEEE Press , 2019 : 134 - 139 .
THANDAVARAYAN G , SEPULCRE M , GOZALVEZ J . Redundancy mitigation in cooperative perception for connected and automated vehicles [C ] // The 91st Vehicular Technology Conference . Piscataway:IEEE Press , 2020 : 1 - 5 .
HIGUCHI T , GIORDANI M , ZANELLA A , et al . Value-anticipating V2V communications for cooperative perception [C ] // Intelligent Vehicles Symposium . Piscataway:IEEE Press , 2019 : 1947 - 1952 .
TAYA A , NISHIO T , MORIKURA M , et al . Concurrent data dissemination at intersections in mmWave for cooperative perceptions [C ] // The 88th Vehicular Technology Conference . Piscataway:IEEE Press , 2018 : 1 - 5 .
RAHAL J A , VECIANA G D , SHIMIZU T , et al . Optimizing timely coverage in communication constrained collaborative sensing systems [C ] // The 18th International Symposium on Modeling and Optimization in Mobile,Ad Hoc,and Wireless Networks . Piscataway:IEEE Press , 2020 : 1 - 8 .
NOH S , AN K , HAN W . Toward highly automated driving by vehicle-to-infrastructure communications [C ] // The 15th International Conference on Control,Automation and Systems . Piscataway:IEEE Press , 2015 : 2016 - 2021 .
REBSAMEN B , BANDYOPADHYAY T , WONGPIROMSARN T , et al . Utilizing the infrastructure to assist autonomous vehicles in a mobility on demand context [C ] // TENCON 2012 IEEE Region 10 Conference . Piscataway:IEEE Press , 2012 : 1 - 5 .
LIU W J , MURAMATSU S , OKUBO Y . Cooperation of V2I/P2I communication and roadside radar perception for the safety of vulnerable road users [C ] // The 16th International Conference on Intelligent Transportation Systems Telecommunications . Piscataway:IEEE Press , 2018 : 1 - 7 .
RAUCH A , KLANNER F , RASSHOFER R , et al . Car2X-based perception in a high-level fusion architecture for cooperative perception systems [C ] // IEEE Intelligent Vehicles Symposium . Piscataway:IEEE Press , 2012 : 270 - 275 .
SRIDHAR S , ESKANDARIAN A . Cooperative perception in autonomous ground vehicles using a mobile-robot testbed [J ] . IET Intelligent Transport Systems , 2019 , 13 ( 10 ): 1545 - 1556 .
XIAO Z Y , MO Z B , JIANG K , et al . Multimedia fusion at semantic level in vehicle cooperative perception [C ] // International Conference on Multimedia & Expo Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
LIAN Y X , QIAN L , DING L H , et al . Semantic fusion infrastructure for unmanned vehicle system based on cooperative 5G MEC [C ] // IEEE/CIC International Conference on Communications in China . Piscataway:IEEE Press , 2020 : 202 - 207 .
CHEN Q , TANG S H , YANG Q , et al . Cooper:cooperative perception for connected autonomous vehicles based on 3D point clouds [C ] // The 39th International Conference on Distributed Computing Systems . Piscataway:IEEE Press , 2019 : 514 - 524 .
RAUCH A , MAIER S , KLANNER F , et al . Inter-vehicle object association for cooperative perception systems [C ] // The 16th International Conference on Intelligent Transportation Systems . Piscataway:IEEE Press , 2013 : 893 - 898 .
WEI S G , YU D , LIN G C . Interactive perception-based multiple object tracking via CVIS and AV [J ] . IEEE Access , 2019 , 7 : 1907 - 1921 .
ARNOLD E , DIANATI M , TEMPLE R D , et al . Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors [J ] . IEEE Transactions on Intelligent Transportation Systems , 2020 ,doi:10.1109/TITS.2020.3028424.
LI H , NASHASHIBI F . A new method for occupancy grid maps merging:application to multi-vehicle cooperative local mapping and moving object detection in outdoor environment [C ] // The 12th International Conference on Control Automation Robotics & Vision . Piscataway:IEEE Press , 2012 : 632 - 637 .
LI H , TSUKADA M , NASHASHIBI F , et al . Multivehicle cooperative local mapping:a methodology based on occupancy grid map merging [J ] . IEEE Transactions on Intelligent Transportation Systems , 2014 , 15 ( 5 ): 2089 - 2100 .
CAMARDA F , DAVOINE F , CHERFAOUI V . Fusion of evidential occupancy grids for cooperative perception [C ] // The 13th Annual Conference on System of Systems Engineering . Piscataway:IEEE Press , 2018 : 284 - 290 .
AMBROSIN M , ALVAREZ I J , BUERKLE C , et al . Object-level perception sharing among connected vehicles [C ] // IEEE Intelligent Transportation Systems Conference . Piscataway:IEEE Press , 2019 : 1566 - 1573 .
VASIC M , MARTINOLI A . A Collaborative sensor fusion algorithm for multi-object tracking using a Gaussian mixture probability hypothesis density filter [C ] // The 18th International Conference on Intelligent Transportation Systems . Piscataway:IEEE Press , 2015 : 491 - 498 .
YUAN T , KRISHNAN K , Chen Q , et al . Object matching for inter-vehicle communication systems—an IMM-based track association approach with sequential multiple hypothesis test [J ] . IEEE Transactions on Intelligent Transportation Systems , 2017 , 18 ( 12 ): 3501 - 3512 .
KIM S W , LIU W . Cooperative autonomous driving:a mirror neuron inspired intention awareness and cooperative perception approach [J ] . IEEE Intelligent Transportation Systems Magazine , 2016 , 8 ( 3 ): 23 - 32 .
KIM S W , LIU W , ANG M H , et al . Cooperative autonomous driving using cooperative perception and mirror neuron inspired intention awareness [C ] // International Conference on Connected Vehicles and Expo . Piscataway:IEEE Press , 2014 : 369 - 376 .
LIU W , KIM S W , MARCZUK K , et al . Vehicle motion intention reasoning using cooperative perception on urban road [C ] // The 17th International Conference on Intelligent Transportation Systems . Piscataway:IEEE Press , 2014 : 424 - 430 .
LIU W , KIM S W , CHONG Z J , et al . Motion planning using cooperative perception on urban road [C ] // The 6th IEEE Conference on Robotics,Automation and Mechatronics . Piscataway:IEEE Press , 2013 : 130 - 137 .
XIAO Z Y , YANG D G , WEN F X , et al . A unified multiple-target positioning framework for intelligent connected vehicles [J ] . Sensors , 2019 , 19 ( 9 ): 1 - 22 .
MILLER A , RIM K , CHOPRA P , et al . Cooperative perception and localization for cooperative driving [C ] // IEEE International Conference on Robotics and Automation . Piscataway:IEEE Press , 2020 : 1256 - 1262 .
AN K , HAN W . Cooperative vehicle control system based on fusion map [C ] // The 7th International Conference on Computing and Convergence Technology . Piscataway:IEEE Press , 2012 : 94 - 97 .
FENG J Y , LIU Z , WU C , et al . AVE:autonomous vehicular edge computing framework with ACO-based scheduling [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 12 ): 10660 - 10675 .
SUN J N , GU Q , ZHENG T , et al . Joint communication and computing resource allocation in vehicular edge computing [J ] . International Journal of Distributed Sensor Networks , 2019 , 15 ( 3 ): 1 - 13 .
MATSUMOTO H , GU B , MIZUNO O . A V2X task offloading method considering automobiles’ behavior in urban area [C ] // The 20th Asia-Pacific Network Operations and Management Symposium . Piscataway:IEEE Press , 2019 : 1 - 4 .
ZHANG K , MAO Y M , LENG S P , et al . Mobile-edge computing for vehicular networks:a promising network paradigm with predictive off-loading [J ] . IEEE Vehicular Technology Magazine , 2017 , 12 ( 2 ): 36 - 44 .
WANG H S , LI X , JI H , et al . Dynamic offloading scheduling scheme for MEC-enabled vehicular networks [C ] // IEEE/CIC International Conference on Communications in China . Piscataway:IEEE Press , 2018 : 206 - 210 .
CHEN C , CHEN L L , LIU L , et al . Delay-optimized V2V-based computation offloading in urban vehicular edge computing and networks [J ] . IEEE Access , 2020 , 8 : 18863 - 18873 .
YANG C , LIU Y , CHEN X , et al . Efficient mobility-aware task offloading for vehicular edge computing networks [J ] . IEEE Access , 2019 , 7 : 26652 - 26664 .
PACHECO L , OLIVEIRA H , ROSARIO D , et al . Service migration for connected autonomous vehicles [C ] // IEEE Symposium on Computers and Communications . Piscataway:IEEE Press , 2020 : 1 - 6 .
ZHAO H T , DING Y , ZHANG M K , et al . Multipath transmission workload balancing optimization scheme based on mobile edge computing in vehicular heterogeneous network [J ] . IEEE Access , 2019 , 7 : 116047 - 116055 .
TANG J , YU R , LIU S S , et al . A container based edge offloading framework for autonomous driving [J ] . IEEE Access , 2020 , 8 : 33713 - 33726 .
ZHOU Z Y , LIAO H J , WANG X Y , et al . When vehicular fog computing meets autonomous driving:computational resource management and task offloading [J ] . IEEE Network , 2020 , 34 ( 6 ): 1 - 8 .
WANG H S , LI X , JI H , et al . Federated offloading scheme to minimize latency in MEC-enabled vehicular networks [C ] // IEEE Globecom Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
XIE R C , TANG Q Q , WANG Q N , et al . Collaborative vehicular edge computing networks:architecture design and research challenges [J ] . IEEE Access , 2019 , 7 : 178942 - 178952 .
WANG L , ZHANG Q Y , LI Y H Z , et al . MobileEdge:enhancing on-board vehicle computing units using mobile edges for CAVs [C ] // The 25th International Conference on Parallel and Distributed Systems . Piscataway:IEEE Press , 2019 : 470 - 479 .
VLADYKO A , KHAKIMOV A , MUTHANNA A , et al . Distributed edge computing to assist ultra-low-latency VANET applications [J ] . Future Internet , 2019 , 11 ( 6 ): 1 - 22 .
ZHANG J , GUO H Z , LIU J J , et al . Task offloading in vehicular edge computing networks:a load-balancing solution [J ] . IEEE Transactions on Vehicular Technology , 2019 , 69 ( 2 ): 2092 - 2104 .
CORONADO E , CEBRIAN-MARQUEZ G , RIGGIO R . Enabling computation offloading for autonomous and assisted driving in 5G networks [C ] // IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
GUO H Z , ZHANG J , LIU J J . FiWi-enhanced vehicular edge computing networks:collaborative task offloading [J ] . IEEE Vehicular Technology Magazine , 2019 , 14 ( 1 ): 45 - 53 .
QIAO G H , LENG S P , ZHANG K , et al . Collaborative task offloading in vehicular edge multi-access networks [J ] . IEEE Communications Magazine , 2018 , 56 ( 8 ): 48 - 54 .
FENG J Y , LIU Z , WU C , et al . HVC:a hybrid cloud computing framework in vehicular environments [C ] // The 5th IEEE International Conference on Mobile Cloud Computing,Services,and Engineering . Piscataway:IEEE Press , 2017 : 9 - 16 .
SASAKI K , SUZUKI N , MAKIDO S , et al . Vehicle control system coordinated between cloud and mobile edge computing [C ] // The 55th Annual Conference of the Society of Instrument and Control Engineers of Japan . Piscataway:IEEE Press , 2016 : 1122 - 1127 .
SASAKI K , SUZUKI N , MAKIDO S , et al . Layered vehicle control system coordinated between multiple edge servers [C ] // IEEE Conference on Network Softwarization . Piscataway:IEEE Press , 2017 : 1 - 5 .
SASAKI K , MAKIDO S , NAKAO A . Vehicle control system for cooperative driving coordinated multi-layered edge servers [C ] // IEEE 7th International Conference on Cloud Networking . Piscataway:IEEE Press , 2018 : 1 - 7 .
KREUTZ D , RAMOS F M V , VERISSIMO P E , et al . Software-defined networking:a comprehensive survey [J ] . Proceedings of the IEEE , 2014 , 103 ( 1 ): 14 - 76 .
郭金林 , 武继刚 , 陈龙 , 等 . 基于光纤−无线网络的协同计算卸载算法 [J ] . 计算机工程与科学 , 2019 , 41 ( 1 ): 31 - 40 .
GUO J L , WU J G , CHEN L , et al . A collaborative computation offloading algorithm based on fiber-wireless networks [J ] . Computer Engineering and Science , 2019 , 41 ( 1 ): 31 - 40 .
SUN F , HOU F , CHENG N , et al . Cooperative task scheduling for computation offloading in vehicular cloud [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 11 ): 11049 - 11061 .
LIN K , LIN B , CHEN X , et al . A time-driven workflow scheduling strategy for reasoning tasks of autonomous driving in edge environment [C ] // IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking . Piscataway:IEEE Press , 2019 : 124 - 131 .
WANG J F , LYU T J , HUANG P M , et al . Mobility-aware partial computation offloading in vehicular networks:a deep reinforcement learning based scheme [J ] . China Communications , 2020 , 17 ( 10 ): 31 - 49 .
CUI M Y , ZHONG S P , LI B Y , et al . Offloading autonomous driving services via edge computing [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 10 ): 10535 - 10547 .
LAMB Z , AGRAWAL D . Context-aware mobile edge computing in vehicular ad-hoc networks [C ] // The 28th International Telecommunication Networks and Applications Conference . Piscataway:IEEE Press , 2018 : 1 - 7 .
WANG X J , WEI X , WANG L . A deep learning based energy-efficient computational offloading method in Internet of vehicles [J ] . China Communications , 2019 , 16 ( 3 ): 81 - 91 .
LI L J , ZHOU H M , SHAWN X X , et al . Compound model of task arrivals and load-aware offloading for vehicular mobile edge computing networks [J ] . IEEE Access , 2019 , 7 : 26631 - 26640 .
LIU J , WANG S B , WANG J T , et al . A task oriented computation offloading algorithm for intelligent vehicle network with mobile edge computing [J ] . IEEE Access , 2019 , 7 : 180491 - 180502 .
XU X L , XUE Y , QI L Y , et al . An edge computing-enabled computation offloading method with privacy preservation for Internet of connected vehicles [J ] . Future Generation Computer Systems , 2019 , 96 : 89 - 100 .
SHANG L C , WANG X H , WANG P , et al . Computation offloading management in vehicular edge network under imperfect CSI [C ] // The 2nd IEEE International Conference on Information Communication and Signal Processing . Piscataway:IEEE Press , 2019 : 199 - 203 .
LIU Y J , WANG S G , HUANG J , et al . A computation offloading algorithm based on game theory for vehicular edge networks [C ] // IEEE International Conference on Communications . Piscataway:IEEE Press , 2018 : 1 - 6 .
NING Z L , HUANG J , WANG X J , et al . Mobile edge computing-enabled Internet of vehicles:toward energy-efficient scheduling [J ] . IEEE Network , 2019 , 33 ( 5 ): 198 - 205 .
XU X L , XUE Y , LI X , et al . A computation offloading method for edge computing with vehicle-to-everything [J ] . IEEE Access , 2019 , 7 : 131068 - 131077 .
DAI Y Y , XU D , MAHARJAN S , et al . Joint load balancing and offloading in vehicular edge computing and networks [J ] . IEEE Internet of Things Journal , 2018 , 6 ( 3 ): 4377 - 4387 .
DAI H J , ZENG X Y , YU Z L , et al . A scheduling algorithm for autonomous driving tasks on mobile edge computing servers [J ] . Journal of Systems Architecture , 2019 , 94 : 14 - 23 .
LIU Q , CHEN Z G , WU J , et al . An efficient task scheduling strategy utilizing mobile edge computing in autonomous driving environment [J ] . Electronics , 2019 , 8 ( 11 ): 1 - 19 .
KOVALENKO A , HUSSAIN R F , SEMIARI O , et al . Robust resource allocation using edge computing for vehicle to infrastructure (V2I) networks [C ] // IEEE 3rd International Conference on Fog and Edge Computing . Piscataway:IEEE Press , 2019 : 1 - 6 .
TAREQ M M K , SEMIARI O , AMINI M S , et al . Ultra reliable,low latency vehicle-to-infrastructure wireless communications with edge computing [C ] // IEEE Global Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 7 .
LI X , DANG Y F , CHEN T F . Vehicular edge cloud computing:depressurize the intelligent vehicles onboard computational power [C ] // The 21st International Conference on Intelligent Transportation Systems . Piscataway:IEEE Press , 2018 : 3421 - 3426 .
LIN C C , DENG D J , YAO C C . Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units [J ] . IEEE Internet of Things Journal , 2017 , 5 ( 5 ): 3692 - 3700 .
LI S C , ZHU G , LIN S Y . Joint radio and computation resource allocation with predictable channel in vehicular edge computing [C ] // The 21st International Conference on Intelligent Transportation Systems . Piscataway:IEEE Press , 2018 : 3736 - 3741 .
BAI B , XU F L , CAO Y Y , et al . Hybrid sensing data fusion of cooperative perception for autonomous driving with augmented vehicular reality [J ] . IEEE Systems Journal , 2020 ,doi:10.1109/JSYST.2020.3007202.
SORKHOH I , EBRAHIMI D , ATALLAH R , et al . Workload scheduling in vehicular networks with edge cloud capabilities [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 9 ): 8472 - 8486 .
NING Z L , DONG P R , WANG X J , et al . Deep reinforcement learning for vehicular edge computing:an intelligent offloading system [J ] . ACM Transactions on Intelligent Systems and Technology , 2019 , 10 ( 6 ): 1 - 24 .
WANG C W , CHEN X Z , LIU D , et al . Optimizing the data transmission scheme for edge-based automatic driving [C ] // IEEE International Conference on Embedded Software and Systems . Piscataway:IEEE Press , 2019 : 1 - 8 .
NGUYEN T D T , NGUYEN V D , PHAM V-N , et al . Modeling data redundancy and cost-aware task allocation in MEC-enabled internet-of-vehicles applications [J ] . IEEE Internet of Things Journal , 2020 ,doi:10.1109/JIOT.2020.3015534.
ZHOU J S , TIAN D X , WANG Y P , et al . Reliability-oriented optimization of computation offloading for cooperative vehicle-infrastructure systems [J ] . IEEE Signal Processing Letters , 2019 , 26 ( 1 ): 104 - 108 .
MENDKI P , . Blockchain enabled IoT edge computing [C ] // International Conference on Blockchain Technology . New York:ACM Press , 2019 : 66 - 69 .
0
浏览量
2474
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构