浏览全部资源
扫码关注微信
1. 贵州大学计算机科学与技术学院,贵州 贵阳 550025
2. 贵州省公共大数据重点实验室,贵州 贵阳 550025
3. 西安交通大学计算机科学与技术学院,陕西 西安 710049
[ "黄瑞章(1979-),女,天津人,博士,贵州大学副教授,主要研究方向为数据融合分析、文本挖掘、网络挖掘和知识发现。" ]
[ "靳文繁(1996- ),男,贵州毕节人,贵州大学硕士生,主要研究方向为自然语言处理、信息抽取。" ]
[ "陈艳平(1980- ),男,贵州长顺人,博士,贵州大学副教授,主要研究方向为人工智能、自然语言处理。" ]
[ "秦永彬(1980- ),男,山东招远人,博士,贵州大学教授,主要研究方向为大数据治理与应用、多源数据融合。" ]
[ "郑庆华(1969- ),男,浙江嵊州人,博士,西安交通大学教授,主要研究方向为大数据知识工程、网络舆情监测。" ]
网络出版日期:2021-01,
纸质出版日期:2021-01-25
移动端阅览
黄瑞章, 靳文繁, 陈艳平, 等. 基于Highway-BiLSTM网络的汉语谓语中心词识别研究[J]. 通信学报, 2021,42(1):100-107.
Ruizhang HUANG, Wenfan JIN, Yanping CHEN, et al. Research on Chinese predicate head recognition based on Highway-BiLSTM network[J]. Journal on communications, 2021, 42(1): 100-107.
黄瑞章, 靳文繁, 陈艳平, 等. 基于Highway-BiLSTM网络的汉语谓语中心词识别研究[J]. 通信学报, 2021,42(1):100-107. DOI: 10.11959/j.issn.1000-436x.2021027.
Ruizhang HUANG, Wenfan JIN, Yanping CHEN, et al. Research on Chinese predicate head recognition based on Highway-BiLSTM network[J]. Journal on communications, 2021, 42(1): 100-107. DOI: 10.11959/j.issn.1000-436x.2021027.
针对汉语谓语中心词识别困难及唯一性的问题,提出了一种基于Highway-BiLSTM网络的深度学习模型。首先,通过多层 BiLSTM 网络叠加获取句子内部不同粒度抽象语义信息的直接依赖关系;然后,利用 Highway网络缓解深层模型出现的梯度消失问题;最后,通过约束层对输出路径进行规划,解决谓语中心词的唯一性问题。实验结果表明,该方法有效提升了谓语中心词识别的性能。
Aiming at the problem of difficult recognition and uniqueness of Chinese predicate head
a Highway-BiLSTM model was proposed.Firstly
multi-layer BiLSTM networks were used to capture multi-granular semantic dependence in a sentence.Then
a Highway network was adopted to alleviate the problem of gradient disappearance.Finally
the output path was optimized by a constraint layer which was designed to guarantee the uniqueness of predicate head.The experimental results show that the proposed method effectively improves the performance of predicate head recognition.
LUO Z S , ZHENG B X . An approach to the automatic analysis and frequence statistics of Chinese sentence patterns [J ] . Journal of Chinese Information Processing , 1994 , 8 ( 2 ): 1 - 9 .
LI G C , MENG J . A method of identifying the predicate head based on the correspondence between the subject and the predicate [J ] . Journal of Chinese Information Processing , 2005 , 19 ( 1 ): 1 - 7 .
SUI Z F , YU S W . The research on recognizing the predicate head of a Chinese simple sentence in EBMT [J ] . Journal of Chinese Information Processing , 1998 , 12 ( 4 ): 39 - 46 .
SUI Z F , YU S W . The acquisition and application of the knowledge for recognizing the predicate head of a Chinese simple sentence [J ] . Acta Scientiarum Naturalium Universitatis Pekinensis , 1998 , 34 ( 2-3 ): 221 - 229 .
陈小荷 , 石定栩 . 汉语句子的主题-主语标注 [C ] // 全国计算机语言学联合学术会议 . 北京:中国计算机学会 , 1997 : 102 - 108 .
CHEN X H , SHI D X . Topic-subject labeling of Chinese sentences [C ] // National Computer Linguistics Joint Academic Conference . Beijing:China Computer Federation , 1997 : 102 - 108 .
WANG H L , ZHOU G D . Feature engineering for predicate identification and classification in semantic analysis [J ] . Computer Engineering and Application , 2010 , 46 ( 9 ): 134 - 137 .
谌志群 . 汉语句子谓语识别的自动识别方法研究 [J ] . 计算机工程与应用 , 2007 , 43 ( 17 ): 176 - 178 .
CHEN Z Q . Study on recognizing predicate of Chinese sentences [J ] . Engineering and Applications , 2007 , 43 ( 17 ): 176 - 178 .
GONG X J , LUO Z S , LUO W H . Recognizing the predicate head of Chinese sentences [J ] . Journal of Chinese Information Processing , 2003 , 17 ( 2 ): 7 - 13 .
HAN L , LUO S L , PAN L M . High accuracy Chinese predicate recognition method combining lexical and syntactic feature [J ] . Journal of Zhejiang University (Engineering Edition) , 2014 , 48 ( 12 ): 2107 - 2114 .
李琳 , 赵维纳 , 泽旺宽卓 . 基于词向量特征的藏语谓语动词短语识别模型 [J ] . 电子技术与软件工程 , 2019 ( 4 ): 242 - 243 .
LI L , ZHAO W N , ZEWANG K Z . Tibetan predicate verb phrase recognition model based on word vector features [J ] . Electronic Technology & Software Engineering , 2019 ( 4 ): 242 - 243 .
RAVINER L , JUANG B . An introduction to hidden Markov models [J ] . IEEE ASSP Magazine , 1986 , 3 ( 1 ): 4 - 16 .
LAFFERTY J , MCCALLUM A , PEREIRA F C N . Conditional random fields:probabilistic models for segmenting and labeling sequence data [J ] . Proceedings of the 18th International Conference on Machine Learning.New York:ACM Press , 2001 : 282 - 289 .
HAMMERTON J , . Named entity recognition with long-short term memory [C ] // Proceedings of the 17th Conference on Natural Language Learning at HLT-NAACL . New York:ACM Press , 2003 : 172 - 175 .
LI F , ZHANG M , TIAN B , et al . Recognizing irregular entities in biomedical text via deep neural networks [J ] . Pattern Recognition Letters , 2018 , 105 : 105 - 113 .
CARRERAS X , MARQUEZ L . Introduction to the CoNLL-2005 shared task:semantic role labeling [C ] // Proceedings of the 19th Conference on Computational Natural Language Learning . Boston:Association for Computational Linguistics , 2005 : 152 - 164 .
KOOMEN P , PUNYAKANOK V , ROTH D , et al . Generalized inference with multiple semantic role labeling systems [C ] // Proceedings of the 9th Conference on Computational Natural Language Learning . Boston:Association for Computational Linguistics , 2005 : 181 - 184 .
TACKSTROM O , GANCHEV K , DAS D . Efficient inference and structured learning for semantic role labeling [J ] . Transactions of the Association for Computational Linguistics , 2015 , 3 : 29 - 41 .
ZHOU J , XU W . End-to-end learning of semantic role labeling using recurrent neural networks [C ] // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers) . Boston:Association for Computational Linguistics , 2015 : 1127 - 1137 .
GUO J , CHE W , WANG H , et al . A unified architecture for semantic role labeling and relation classification [C ] // Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers .[S.n.:s.l. ] , 2016 : 1264 - 1274 .
王瑞波 , 李济洪 , 李国臣 , 等 . 基于 Dropout 正则化的汉语框架语义角色识别 [J ] . 汉语信息学报 , 2017 , 31 ( 1 ): 147 - 154 .
WANG R B , LI J H , LI G C , et al . Chinese frame semantic role recognition based on Dropout regularization [J ] . Journal of Chinese Information Processing , 2017 , 31 ( 1 ): 147 - 154 .
STRUBELL E , VERGA P , ANDOR D , et al . Linguistically-informed self-attention for semantic role labeling [C ] // Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing . Boston:Association for Computational Linguistics , 2018 : 5027 - 5038 .
HE L , LEE K , LEWIS M , et al . Deep semantic role labeling:what works and what’s next [C ] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers) . Boston:Association for Computational Linguistics , 2017 : 473 - 483 .
PUNDAK G , SAINATH T N . Highway-LSTM and recurrent highway networks for speech recognition [C ] // Interspeech, ,[S.n.:s.l. ] , 2017 .
ZHANG Y , CHEN G , YU D , et al . Highway long short-term memory RNNs for distant speech recognition [C ] // 2016 IEEE International Conference on Acoustics,Speech and Signal Processing . Piscataway:IEEE Press , 2016 : 5755 - 5759 .
GAL Y , GHAHRAMAN Z . A theoretically grounded application of dropout in recurrent neural networks [J ] . Advances in Neural Information Processing Systems , 2016 , 29 : 1019 - 1027 .
李婷 , 秦永彬 , 黄瑞章 , 等 . 基于神经网络的汉语谓语动词识别研究 [J ] . 数据采集与处理 , 2020 , 35 ( 3 ): 582 - 590 .
LI T , QIN Y B , HUANG R Z , et al . Research on Chinese predicate verb recognition based on neural network [J ] . Journal of Data Acquisition & Processing , 2020 ( 3 ): 582 - 590 .
SAXE A M , MCCLELLAND J L , GANGULI S . Exact solutions to the nonlinear dynamics of learning in deep linear neural networks [J ] . arXiv Preprint,arXiv:1312.6120 , 2013 .
ZEILER M D . ADADELTA:an adaptive learning rate method [J ] . arXiv Preprint,arXiv:1212.5701 , 2012 .
HE K , ZHANG X , REN S , et al . Deep residual learning for image recognition [C ] // IEEE Conference on Computer Vision & Pattern Recognition . Los Alamitos:IEEE Computer Society , 2016 : 770 - 778 .
0
浏览量
603
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构