浏览全部资源
扫码关注微信
1. 西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
2. 中国电子科技集团公司第54研究所,河北 石家庄 050081
[ "刘雷(1987- ),男,河南南阳人,博士,西安电子科技大学讲师,主要研究方向为车载边缘计算。" ]
[ "陈晨(1977- ),男,陕西西安人,博士,西安电子科技大学教授、博士生导师,主要研究方向为智能交通。" ]
[ "冯杰(1987- ),女,陕西咸阳人,博士,西安电子科技大学副教授,主要研究方向为边缘智能。" ]
[ "裴庆祺(1975- ),男,广西百色人,西安电子科技大学教授、博士生导师,主要研究方向为区块链。" ]
[ "何辞(1983- ),女,湖北武汉人,中国电子科技集团公司第 54 研究所高级工程师,主要研究方向为空天信息网络。" ]
[ "窦志斌(1980- ),男,山西阳泉人,中国电子科技集团公司第54研究所高级工程师,主要研究方向为空天信息网络。" ]
网络出版日期:2021-01,
纸质出版日期:2021-01-25
移动端阅览
刘雷, 陈晨, 冯杰, 等. 车载边缘计算中任务卸载和服务缓存的联合智能优化[J]. 通信学报, 2021,42(1):18-26.
Lei LIU, Chen CHEN, Jie FENG, et al. Joint intelligent optimization of task offloading and service caching for vehicular edge computing[J]. Journal on communications, 2021, 42(1): 18-26.
刘雷, 陈晨, 冯杰, 等. 车载边缘计算中任务卸载和服务缓存的联合智能优化[J]. 通信学报, 2021,42(1):18-26. DOI: 10.11959/j.issn.1000-436x.2021017.
Lei LIU, Chen CHEN, Jie FENG, et al. Joint intelligent optimization of task offloading and service caching for vehicular edge computing[J]. Journal on communications, 2021, 42(1): 18-26. DOI: 10.11959/j.issn.1000-436x.2021017.
针对车载环境下有限的网络资源和大量用户需求之间的矛盾,提出了智能驱动的车载边缘计算网络架构,以实现网络资源的全面协同和智能管理。基于该架构,设计了任务卸载和服务缓存的联合优化机制,对用户任务卸载以及计算和缓存资源的调度进行了建模。鉴于车载网络的动态、随机和时变的特性,利用异步分布式强化学习算法,给出了最优的卸载决策和资源管理方案。实验结果表明,与其他算法相比,所提算法取得了明显的性能提升。
Given the contradiction between limited network resources and massive user demands in Internet of vehicles
an intelligent vehicular edge computing network architecture was proposed to achieve the comprehensive cooperation and intelligent management of network resources.Based on this architecture
a joint optimization scheme of task offloading and service caching was furtherly devised
which formulated an optimization problem about how to offload tasks and allocate computation and cache resources.In view of the dynamics
randomness and time variation of vehicular networks
an asynchronous distributed reinforcement learning algorithm was employed to obtain the optimal task offloading and resource management policy.Simulation results demonstrate that the proposed algorithm achieves significant performance improvement in comparison with the other schemes.
中国信息通信研究院 . 车联网白皮书 [R ] . 北京:中国信息通信研究院 , 2017 .
CAICT . White paper of Internet of vehicles [R ] . Beijing:CAICT , 2017 .
郭辉 , 芮兰兰 , 高志鹏 . 车辆边缘网络中基于多参数 MDP 模型的动态服务迁移策略 [J ] . 通信学报 , 2020 , 41 ( 1 ): 1 - 14 .
GUO H , RUI L L , GAO Z P . Dynamic service migration strategy based on MDP model with multiple parameter in vehicular edge network [J ] . Journal on Communications , 2020 , 41 ( 1 ): 1 - 14 .
张海波 , 王子心 , 贺晓帆 . SDN 和 MEC 架构下 V2X 卸载与资源分配 [J ] . 通信学报 , 2020 , 41 ( 1 ): 114 - 124 .
ZHANG H B , WANG Z X , HE X F . V2X offloading and resource allocation under SDN and MEC architecture [J ] . Journal on Communications , 2020 , 41 ( 1 ): 114 - 124 .
LIU L , CHEN C , QIU T , et al . A data dissemination scheme based on clustering and probabilistic broadcasting in VANETs [J ] . Vehicular Communications , 2018 , 13 : 78 - 88 .
CHEN C , WANG C , QIU T , et al . Caching in vehicular named data networking:architecture,schemes and future directions [J ] . IEEE Communications Surveys & Tutorials , 2020 , 22 ( 4 ): 2378 - 2407 .
彭鑫 , 邓清勇 , 田淑娟 , 等 . 多信道车联网 V2R/V2V 数据传输调度算法 [J ] . 通信学报 , 2019 , 40 ( 3 ): 92 - 101 .
PENG X , DENG Q Y , TIAN S J , et al . Data dissemination scheduling algorithm for V2R/V2V in multi-channel VANET [J ] . Journal on Communications , 2019 , 40 ( 3 ): 92 - 101 .
FENG J , YU F R , PEI Q , et al . Cooperative computation offloading and resource allocation for blockchain-enabled mobile edge computing:a deep reinforcement learning approach [J ] . IEEE Internet of Things Journal , 2020 , 7 ( 7 ): 6214 - 6228 .
FENG J , YU F R , PEI Q , et al . Joint optimization of radio and computational resources allocation in blockchain-enabled mobile edge computing systems [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 6 ): 4321 - 4334 .
LIU L , CHEN C , PEI Q , et al . Vehicular edge computing and networking:a survey [J ] . Mobile Networks and Applications , 2020 ,doi:10.1007/s11036-020-01624-1.
WANG T , TANG M B , CAO Y . Resource optimization protocol based on multicommunity model for intermittently connected mobile networks [J ] . IEEE Systems Journal , 2019 , 14 ( 1 ): 410 - 421 .
WANG T , CAO Y , ZHOU Y , et al . A survey on geographic routing protocols in delay/disruption tolerant networks [J ] . International Journal of Distributed Sensor Networks , 2016 , 12 ( 2 ): 1 - 12 .
DAI Y , XU D , MAHARJAN S , et al . Joint load balancing and offloading in vehicular edge computing and networks [J ] . IEEE Internet of Things Journal , 2018 , 6 ( 3 ): 4377 - 4387 .
TAMANI N , BRIK B , LAGRAA N , et al . On link stability metric and fuzzy quantification for service selection in mobile vehicular cloud [J ] . IEEE Transactions on Intelligent Transportation Systems , 2019 , 21 ( 5 ): 2050 - 2062 .
YANG C , LIU Y , CHEN X , et al . Efficient mobility-aware task offloading for vehicular edge computing networks [J ] . IEEE Access , 2019 , 7 : 26652 - 26664 .
SORKHOH I , EBRAHIMI D , ATALLAH R , et al . Workload scheduling in vehicular networks with edge cloud capabilities [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 9 ): 8472 - 8486 .
DU J , YU F R , CHU X , et al . Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization [J ] . IEEE Transactions on Vehicular Technology , 2018 , 68 ( 2 ): 1079 - 1092 .
TAREQ M M K , SEMIARI O , SALEHI M A , et al . Ultra reliable,low latency vehicle-to-infrastructure wireless communications with edge computing [C ] // 2018 IEEE Global Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 7 .
ZHANG K , MAO Y , LENG S , et al . Mobile-edge computing for vehicular networks:a promising network paradigm with predictive off-loading [J ] . IEEE Vehicular Technology Magazine , 2017 , 12 ( 2 ): 36 - 44 .
LIU Y , YU H , XIE S , et al . Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 11 ): 11158 - 11168 .
HE Y , ZHAO N , YIN H . Integrated networking,caching,and computing for connected vehicles:a deep reinforcement learning approach [J ] . IEEE Transactions on Vehicular Technology , 2017 , 67 ( 1 ): 44 - 55 .
HU R Q . Mobility-aware edge caching and computing in vehicle networks:a deep reinforcement learning [J ] . IEEE Transactions on Vehicular Technology , 2018 , 67 ( 11 ): 10190 - 10203 .
NING Z , ZHANG K , WANG X , et al . Joint computing and caching in 5G-envisioned Internet of vehicles:a deep reinforcement learning-based traffic control system [J ] . IEEE Transactions on Intelligent Transportation Systems , 2020 ,doi:10. 1109/TITS.2020.2970276.
CHEN C , LIU L , QIU T , et al . ASGR:an artificial spider-web-based geographic routing in heterogeneous vehicular networks [J ] . IEEE Transactions on Intelligent Transportation Systems , 2018 , 20 ( 5 ): 1604 - 1620 .
PENG H , LI D , ABBOUD K , et al . Performance analysis of IEEE 802.11p DCF for multiplatooning communications with autonomous vehicles [J ] . IEEE Transactions on Vehicular Technology , 2016 , 66 ( 3 ): 2485 - 2498 .
0
浏览量
1275
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构