浏览全部资源
扫码关注微信
1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
2. 北京邮电大学网络与交换技术国家重点实验室,北京 100876
3. 加利福尼亚州立大学信息系统系,洛杉矶 CA90032
[ "李正权(1976- ),男,湖北利川人,博士,江南大学教授,主要研究方向为大规模MIMO等。" ]
[ "林媛(1995- ),女,安徽铜陵人,江南大学硕士生,主要研究方向为信号处理。" ]
[ "李梦雅(1997- ),女,安徽淮北人,江南大学硕士生,主要研究方向为NB-IoT的海量接入。" ]
[ "刘洋(1988- ),男,江苏无锡人,博士,江南大学副教授,主要研究方向为无线信道建模和网络编码。" ]
[ "吴琼(1986- ),男,江苏徐州人,博士,江南大学副教授,主要研究方向为无人驾驶。" ]
[ "邢松(1964- ),男,江苏扬州人,博士,加利福尼亚州立大学教授,主要研究方向为5G移动通信。" ]
网络出版日期:2021-02,
纸质出版日期:2021-02-25
移动端阅览
李正权, 林媛, 李梦雅, 等. 基于判别式受限玻尔兹曼机的数字调制识别[J]. 通信学报, 2021,42(2):81-91.
Zhengquan LI, Yuan LIN, Mengya LI, et al. Digital modulation recognition based on discriminative restricted Boltzmann machine[J]. Journal on communications, 2021, 42(2): 81-91.
李正权, 林媛, 李梦雅, 等. 基于判别式受限玻尔兹曼机的数字调制识别[J]. 通信学报, 2021,42(2):81-91. DOI: 10.11959/j.issn.1000-436x.2021012.
Zhengquan LI, Yuan LIN, Mengya LI, et al. Digital modulation recognition based on discriminative restricted Boltzmann machine[J]. Journal on communications, 2021, 42(2): 81-91. DOI: 10.11959/j.issn.1000-436x.2021012.
为了提高大动态信噪比下数字调制识别性能,提出一种基于高阶累积量和判别式受限玻尔兹曼机的联合调制识别方法。该方法提取数字信号的高阶累积量作为信号特征,综合利用判别式受限玻尔兹曼机的生成能力和分类能力,分析了含有高斯噪声、时变相位偏移或瑞利衰落环境下的数字信号识别率。实验结果表明,与传统识别方法相比,所提方法的识别性能有明显改善。此外,利用该模型的生成能力对输入特征进行重构,可有效提高低信噪比下的信号识别率。
In order to improve the performance of digital modulation recognition under high dynamic signal-to-noise ratio
a joint modulation recognition method based on high-order cumulant and discriminative restricted Boltzmann machine was proposed
which extracted the high-order cumulant of digital signals as signal features
comprehensively utilized the generation ability and classification ability of the discriminative restricted Boltzmann machine
analyzed the recognition rate of digital signals in environments containing Gaussian noise
time-varying phase offset or Rayleigh fading.Experimental results show that compared with traditional classification methods
the recognition performance of the proposed method is obviously improved.In addition
the use of the model’s generation ability to reconstruct the input features can effectively improve the signal recognition rate under low signal-to-noise ratio.
何继爱 , 张文启 . 通信信号调制识别技术及其发展 [J ] . 高技术通讯 , 2016 , 26 ( 2 ): 157 - 165 .
HE J A , ZHANG W Q . The technology for modulation recognition of communication signals and its development [J ] . High Technology Letters , 2016 , 26 ( 2 ): 157 - 165 .
SWAMI A , SADLER B M . Hierarchical digital modulation classification using cumulants [J ] . IEEE Transactions on Communications , 2000 , 48 ( 3 ): 416 - 429 .
WANG A , LI R . Research on digital signal recognition based on higher order cumulants [C ] // 2019 International Conference on Intelligent Transportation,Big Data & Smart City . Piscataway:IEEE Press , 2019 ,doi:10.1109/ICITBS.2019.00146.
ZHANG Y , WU G , WANG J , et al . Wireless signal classification based on high-order cumulants and machine learning [C ] // 2017 International Conference on Computer Technology,Electronics and Communication . Piscataway:IEEE Press , 2017 ,doi:10.1109/ICCTEC.2017.00127.
PAJIC M S , VEINOVIC M , PERIC M , et al . Modulation order reduction method for improving the performance of AMC algorithm based on sixth-order cumulants [J ] . IEEE Access , 2020 , 8 : 106386 - 106394 .
张华娣 , 楼华勋 . MQAM信号调制方式自动识别方法 [J ] . 通信学报 , 2019 , 40 ( 8 ): 200 - 211 .
ZHANG H D , LOU H X . Automatic modulation recognition algorithm for MQAM signal [J ] . Journal on Communications , 2019 , 40 ( 8 ): 200 - 211 .
张茜 . 基于高阶统计特性的调制信号识别 [D ] . 成都:电子科技大学 , 2018 .
ZHANG X . Recognition of digital modulation signals based on high-order statistical characteristics [D ] . Chengdu:University of Electronic Science and Technology of China , 2018 .
ABDELBAR M , TRANTER W H , BOSE T . Cooperative cumulants-based modulation classification in distributed networks [J ] . IEEE Transactions on Cognitive Communications and Networking , 2018 , 4 ( 3 ): 446 - 461 .
刘明骞 , 李兵兵 , 曹超凤 , 等 . 认知无线电中非高斯噪声下数字调制信号识别方法 [J ] . 通信学报 , 2014 , 35 ( 1 ): 82 - 88 .
LIU M Q , LI B B , CAO C F , et al . Recognition method of digital modulation signals over non-Gaussian noise in cognitive radio [J ] . Journal on Communications , 2014 , 35 ( 1 ): 82 - 88 .
赵雄文 , 郭春霞 , 李景春 . 基于高阶累积量和循环谱的信号调制方式混合识别算法 [J ] . 电子与信息学报 , 2016 , 38 ( 3 ): 674 - 680 .
ZHAO X W , GUO C X , LI J C . Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum [J ] . Journal of Electronics & Information Technology , 2016 , 38 ( 3 ): 674 - 680 .
XIE W , HU S , YU C , et al . Deep learning in digital modulation recognition using high order cumulants [J ] . IEEE Access , 2019 , 7 : 63760 - 63766 .
吴少华 . 基于人工蜂群算法的通信信号调制识别研究 [D ] . 南京:南京邮电大学 , 2016 .
WU S H . The research on recognition of communication modulation signal based on artificial bee colony algorithm [D ] . Nanjing:Nanjing University of Posts and Telecommunications , 2016 .
YANG F , HAO B , YANG L , et al . A method of high-precision signal recognition based on higher-order cumulants and SVM [C ] // 2018 5th International Conference on Systems and Informatics . Piscataway:IEEE Press , 2018 ,doi:10.1109/ICSAI.2018.8599313.
宁暑光 . 基于特征提取与学习的无线通信数字调制方式自动识别方法研究 [D ] . 合肥:合肥工业大学 , 2019 .
NING S G . Research on automatic recognition method of wireless communication digital modulation mode based on feature extraction and learning [D ] . Hefei:Hefei University of Technology , 2019 .
杨安锋 , 赵知劲 , 陈颖 . 利用稀疏自编码器的调制样式识别算法 [J ] . 信号处理 , 2018 , 34 ( 7 ): 833 - 842 .
YANG A F , ZHAO Z J , CHEN Y . Modulation recognition algorithm based on sparse auto-encoder [J ] . Journal of Signal Processing , 2018 , 34 ( 7 ): 833 - 842 .
ZHANG Z , HUA Z , LIU Y . Modulation classification in multipath fading channels using sixth-order cumulants and stacked convolutional auto-encoders [J ] . IET Communications , 2017 , 11 ( 6 ): 910 - 915 .
雷志坤 . 基于深度学习的调制识别技术研究 [D ] . 成都:电子科技大学 , 2019 .
LEI Z K . Research on deep learning based modulation recognition technologies [D ] . Chengdu:University of Electronic Science and Technology of China , 2019 .
PEND S , JIANG H , WANG H , et al . Modulation classification based on signal constellation diagrams and deep learning [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2019 , 30 : 718 - 727 .
SANG Y , LI L A . Application of novel architectures for modulation recognition [C ] // 2018 IEEE Asia Pacific Conference on Circuits and Systems . Piscataway:IEEE Press , 2018 ,doi:10.1109/APCCAS.2018.8605691.
XU Y , LI D , WANG Z , et al . A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals [J ] . Wireless Networks , 2017 , 25 ( 7 ): 3735 - 3746 .
WEST N E , O’SHEA T . Deep architectures for modulation recognition [C ] // 2017 IEEE International Symposium on Dynamic Spectrum Access Networks . Piscataway:IEEE Press , 2017 : 1 - 6 .
SALAKHUTDINOV R , MNIH A , HINTON G . Restricted Boltzmann machines for collaborative filtering [C ] // 2007 International Conference on Machine Learning . New York:ACM Press , 2007 : 791 - 798 .
杨安锋 . 基于深度学习的调制样式识别算法研究 [D ] . 杭州:杭州电子科技大学 , 2018 .
YANG A F . Research on modulation type recognition algorithm based on deep learning [D ] . Hangzhou:Hangzhou Dianzi University , 2018 .
LAROCHELLE H , MANDEL M , PASCANU R , et al . Learning algorithms for the classification restricted Boltzmann machine [J ] . Journal of Machine Learning Research , 2012 , 13 ( 1 ): 643 - 669 .
CHEN C L P , FENG S . Generative and discriminative fuzzy restricted Boltzmann machine learning for text and image classification [J ] . IEEE Transactions on Cybernetics , 2018 , 50 ( 5 ): 2237 - 2248 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [C ] // 2015 International Conference on Learning Representations .[S.n.:s.l. ] , 2015 : 1 - 13 .
GLOROT X , BENGIO Y . Understanding the difficulty of training deep feedforward neural networks [C ] // 2010 International Conference on Artificial Intelligence and Statistics . Piscataway:IEEE Press , 2010 : 249 - 256 .
0
浏览量
613
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构