浏览全部资源
扫码关注微信
1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
2. 哈尔滨工程大学先进船舶通信与信息技术重点实验室,黑龙江 哈尔滨 150001
[ "王桐(1977- ),男,黑龙江哈尔滨人,博士,哈尔滨工程大学教授、博士生导师,主要研究方向为车联网建模与仿真等。" ]
[ "高山(1986- ),男,黑龙江伊春人,博士,哈尔滨工程大学讲师、硕士生导师,主要研究方向为人工智能、车联网等。" ]
[ "龚慧雯(1997- ),女,河南南阳人,哈尔滨工程大学硕士生,主要研究方向为大数据分析、机器学习算法等。" ]
[ "孙博(1994- ),男,河北张家口人,哈尔滨工程大学硕士生,主要研究方向为数据挖掘、物联网等。" ]
网络出版日期:2021-02,
纸质出版日期:2021-02-25
移动端阅览
王桐, 高山, 龚慧雯, 等. 基于分时MDP的出租车载客预测推荐技术研究[J]. 通信学报, 2021,42(2):37-51.
Tong WANG, Shan GAO, Huiwen GONG, et al. Research on forecast and recommendation technology of taxi passengers based on time-varying Markov decision process[J]. Journal on communications, 2021, 42(2): 37-51.
王桐, 高山, 龚慧雯, 等. 基于分时MDP的出租车载客预测推荐技术研究[J]. 通信学报, 2021,42(2):37-51. DOI: 10.11959/j.issn.1000-436x.2021002.
Tong WANG, Shan GAO, Huiwen GONG, et al. Research on forecast and recommendation technology of taxi passengers based on time-varying Markov decision process[J]. Journal on communications, 2021, 42(2): 37-51. DOI: 10.11959/j.issn.1000-436x.2021002.
针对出租车盲目寻客导致空载率高的问题,提出了一种出租车载客热点推荐策略,以最大程度优化匹配乘客过程,提高寻客效率。基于出租车历史轨迹数据,结合热点乘客信息的时间序列特性,提出基于循环神经网络的分段预测(SPBR)算法,以及基于分时马尔可夫决策过程(TMDP)的载客推荐模型。实验表明,SPBR算法预测结果的RMSE比SVR、CART和BPNN等算法分别降低了67.6%、71.1%和64.5%; TMDP模型出租车期望回报比历史期望提升了35.9%。
To solve the problems of unloading rate caused by blind passenger search of taxis
the hotspot recommendation strategy of taxi passengers was proposed.The proposed strategy could optimize the process of matching passengers to the greatest extent to increase the efficiency of passenger search.Based on the historical trajectory data of taxis and the time series characteristics of hotspot passenger information
a segment prediction method was proposed based on recurrent neural network (SPBR) and a passenger recommendation model was proposed based on time-varying Markov decision process (TMDP).Experimental results show that the RMSE predicted by SPBR algorithm is 67.6%
71.1% and 64.5% lower than the SVR
CART and BPNN algorithms.The expected return of taxis based on the TMDP algorithm is 35.9% higher than historical expectations.
WANG T , CAO Y , ZHOU Y , et al . A survey on geographic routing protocols in delay/disruption tolerant networks [J ] . International Journal of Distributed Sensor Networks , 2016 , 12 ( 2 ): 3174670 .
ZHANG D , HE T , LIN S , et al . Dmodel:online taxicab demand model from big sensor data in a roving sensor network [C ] // 2014 IEEE International Congress on Big Data . Piscataway:IEEE Press , 2014 : 152 - 159 .
HUNTER T , HERRING R , ABBEEL P , et al . Path and travel time inference from GPS probe vehicle data [J ] . NIPS Analyzing Networks and Learning with Graphs , 2009 , 12 ( 1 ): 2 .
MEYER R F , WOLFE H B . The organization and operation of a taxi fleet [J ] . Naval Research Logistics Quarterly , 1961 , 8 ( 2 ): 137 - 150 .
YAMAMOTO K , UESUGI K , WATANABE T . Adaptive routing of cruising taxis by mutual exchange of pathways [C ] // International Conference on Knowledge-Based and Intelligent Information and Engineering Systems . Berlin:Springer , 2008 : 559 - 566 .
POWELL J W , HUANG Y , BASTANI F , et al . Towards reducing taxicab cruising time using spatio-temporal profitability maps [C ] // International Symposium on Spatial and Temporal Databases . Berlin:Springer , 2011 : 242 - 260 .
YUAN J , ZHENG Y , XIE X , et al . Driving with knowledge from the physical world [C ] // Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining . New York:ACM Press , 2011 : 316 - 324 .
SONG C , YAN X , STEPHEN N , et al . Hidden Markov model and driver path preference for floating car trajectory map matching [J ] . IET Intelligent Transport Systems , 2018 , 12 ( 10 ): 1433 - 1441 .
王媛 , 梁泉 , 翁剑成 , 等 . 基于特征图谱的区域出租车出行需求分布特征研究 [J ] . 交通工程 , 2018 , 18 ( 1 ): 1 - 6 .
WANG Y , LIANG Q , WENG J C , et al . Study on the regional taxi travel demand characteristics based on feature graph [J ] . Journal of Transportation Engineering , 2018 , 18 ( 1 ): 1 - 6 .
曾艳秋 , 洪成蹊 . 基于兴趣度和k均值聚类算法的热点区域分析 [J ] . 宜春学院学报 , 2018 , 40 ( 12 ): 47 - 49 .
ZENG Y Q , HONG C X . Hot regions analysis based on density of vehicles and k means clustering [J ] . Journal of Yichun University , 2018 , 40 ( 12 ): 47 - 49 .
王明 . 基于出租车 GPS 数据的载客热点可视化的研究与应用 [D ] . 太原:中北大学 , 2018 .
WANG M . Research and application of passenger hot spot visualization based on taxi GPS data [D ] . Taiyuan:North University of China , 2018 .
李佳蓉 , 夏昊 , 张迎 , 等 . 城市居民出行 O/D 时空分布特征的轨迹数据提取 [J ] . 测绘科学 , 2020 , 45 ( 2 ): 150 - 158 .
LI J R , XIA H , ZHANG Y , et al . Trajectory data extract of O/D temporal and spatial distribution of urban residents [J ] . Science of Surveying and Mapping , 2020 , 45 ( 2 ): 150 - 158 .
方琪 , 王山东 , 朱鸿博 , 等 . 基于决策图的城市热点区域提取 [J ] . 测绘与空间地理信息 , 2018 , 41 ( 11 ): 135 - 137 .
FANG Q , WANG S D , ZHU H B , et al . City hot spot extraction based on decision graph [J ] . Geomatics & Spatial Information Technology , 2018 , 41 ( 11 ): 135 - 137 .
胡浩 , 闫伟 , 李泓明 . 基于组合预测方法的城市道路短时交通流预测 [J ] . 工业工程与管理 , 2019 , 24 ( 3 ): 107 - 115 .
HU H , YAN W , LI H M . Short-term traffic flow prediction of urban road based on combination forecasting method [J ] . Industrial Engineering and Management , 2019 , 24 ( 3 ): 107 - 115 .
OU J , XIA J , WU Y J , et al . Short-term traffic flow forecasting for urban roads using data-driven feature selection strategy and bias-corrected random forests [J ] . Transportation Research Record , 2017 , 2645 ( 1 ): 157 - 167 .
孔蕙心 . 城市客流分布与出租车出行路线推荐算法的研究 [D ] . 北京:北京邮电大学 , 2015 .
KONG H X . Research on urban passenger flow distribution and taxi route recommendation algorithm [D ] . Beijing:Beijing University of Posts and Telecommunications , 2015 .
HU H , WU Z , MAO B , et al . Pick-up tree based route recommendation from taxi trajectories [C ] // International Conference on Web-age Information Management . Berlin:Springer , 2012 : 471 - 483 .
DAI J , YANG B , GUO C , et al . Personalized route recommendation using big trajectory data [C ] // 2015 IEEE 31st International Conference on Data Engineering . Piscataway:IEEE Press , 2015 : 543 - 554 .
GE Y , XIONG H , TUZHILIN A , et al . An energy-efficient mobile recommender system [C ] // Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2010 : 899 - 908 .
SUN Y , YU X , BIE R , et al . Discovering time-dependent shortest path on traffic graph for drivers towards green driving [J ] . Journal of Network and Computer Applications , 2017 , 83 : 204 - 212 .
RONG H , ZHOU X , YANG C , et al . The rich and the poor:a Markov decision process approach to optimizing taxi driver revenue efficiency [C ] // Proceedings of the 25th ACM International on Conference on Information and Knowledge Management . New York:ACM Press , 2016 : 2329 - 2334 .
刘丽 . 基于出租车GPS数据的高效益寻客推荐策略研究 [D ] . 杭州:浙江大学 , 2017 .
LIU L . Research on high-efficiency searching recommendation strategy based on taxi GPS data [D ] . Hangzhou:Zhejiang University , 2017 .
QIAN S , ZHU Y , LI M . Smart recommendation by mining large-scale GPS traces [C ] // 2012 IEEE Wireless Communications and Networking Conference (WCNC) Piscataway:IEEE Press , 2012 : 3267 - 3272 .
RONG H , WANG Z , ZHENG H , et al . Mining efficient taxi operation strategies from large scale geo-location data [J ] . IEEE Access , 2017 , 5 : 25623 - 25634 .
PUTRI F , SONG G , KWON J , et al . DISPAQ:distributed profitable-area query from big taxi trip data [J ] . Sensors , 2017 , 17 ( 10 ): 2201 .
YUAN J , ZHENG Y , XIE X , et al . T-drive:enhancing driving directions with taxi drivers’ intelligence [J ] . IEEE Transactions on Knowledge and Data Engineering , 2011 , 25 ( 1 ): 220 - 232 .
YUAN N J , ZHENG Y , ZHANG L , et al . T-finder:a recommender system for finding passengers and vacant taxis [J ] . IEEE Transactions on Knowledge and Data Engineering , 2012 , 25 ( 10 ): 2390 - 2403 .
朱本常 . 基于时间序列的网约车在线司机与乘客发单的供需预测 [D ] . 武汉:华中科技大学 , 2019 .
ZHU B C . Forecast of supply and demand of online drivers and passengers billing based on time series [D ] . Wuhan:Huazhong University of Science and Technology , 2019 .
QIAN S , CAO J , MOUËL F L , et al . SCRAM:a sharing considered route assignment mechanism for fair taxi route recommendations [C ] // Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2015 : 955 - 964 .
HUANG Y , ZHAO L , VAN WOENSEL T , et al . Time-dependent vehicle routing problem with path flexibility [J ] . Transportation Research Part B:Methodological , 2017 , 95 : 169 - 195 .
LEI T , WANG S , LI J , et al . A cooperative route choice approach via virtual vehicle in IoV [J ] . Vehicular Communications , 2017 , 9 : 281 - 287 .
胡昊然 . 基于 Pick-up 树的路径推荐研究 [D ] . 南京:南京大学 , 2013 .
HU H R . Research on Path Recommendation Based on Pickup Tree [D ] . Nanjing:Nanjing University , 2013 .
XIAO Y , WEI L . Study on revenue distribution of passenger platform under the integrated transportation value chain [C ] // 2016 International Conference on Education,Sports,Arts and Management Engineering . Paris:Atlantis Press , 2016 :doi.org/10.2991/icesame-16.2016.220.
毕硕本 , 万蕾 , 杨树亮 , 等 . 基于 GPS 数据的南京出租车上下客时间特征及热点时空分布 [J ] . 中国科技论文 , 2018 ( 9 ): 10 .
BI S B , WAN L , YANG S L , et al . Characteristics of Nanjing taxi boarding time based on gps data and temporal and spatial distribution of hot spots [J ] . China Science and Technology Papers , 2018 ( 9 ): 10 .
丁涛杰 , 史殿习 , 李永谋 . 基于出租车 GPS 数据的道路平均速度估计方法 [J ] . 计算机技术与发展 , 2015 , 25 ( 7 ): 15 - 19 .
DING T J , SHI D X , LI Y M . Road average speed estimation method based on taxi GPS data [J ] . Computer Technology and Development , 2015 , 25 ( 7 ): 15 - 19 .
0
浏览量
658
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构