浏览全部资源
扫码关注微信
河海大学计算机与信息学院,江苏 南京 211100
[ "高红民(1983- ),男,江苏仪征人,博士,河海大学教授,主要研究方向为深度学习等智能计算方法、图像大数据与人工智能、遥感影像处理等" ]
[ "曹雪莹(1994- ),女,江苏睢宁人,河海大学硕士生,主要研究方向为深度学习与图像处理等" ]
[ "杨耀(1995- ),男,江西宜春人,河海大学硕士生,主要研究方向为深度学习与图像处理等" ]
[ "花再军(1983- ),男,江苏姜堰人,河海大学实验师,主要研究方向为机器学习及图像处理等" ]
[ "李臣明(1969- ),男,内蒙古通辽人,河海大学教授,主要研究方向为智能信息处理、遥感技术与系统等" ]
网络出版日期:2020-11,
纸质出版日期:2020-11-25
移动端阅览
高红民, 曹雪莹, 杨耀, 等. 基于CNN的双边融合网络在高光谱图像分类中的应用[J]. 通信学报, 2020,41(11):132-140.
Hongmin GAO, Xueying CAO, Yao YANG, et al. Application of bilateral fusion model based on CNN in hyperspectral image classification[J]. Journal on communications, 2020, 41(11): 132-140.
高红民, 曹雪莹, 杨耀, 等. 基于CNN的双边融合网络在高光谱图像分类中的应用[J]. 通信学报, 2020,41(11):132-140. DOI: 10.11959/j.issn.1000-436x.2020238.
Hongmin GAO, Xueying CAO, Yao YANG, et al. Application of bilateral fusion model based on CNN in hyperspectral image classification[J]. Journal on communications, 2020, 41(11): 132-140. DOI: 10.11959/j.issn.1000-436x.2020238.
针对基于深度卷积神经网络的高光谱图像分类算法中存在的空间分辨率下降、池化操作引发特征丢失从而导致分类精度下降的问题,设计了一种由双边融合块构成的双边融合块网络。1×1卷积与超链接构成双边融合块上结构,传递局部空间特征,池化、卷积、反卷积、上采样组成下结构,强化高效判别特征。在3个基准高光谱图像数据集上的实验结果表明,该模型优于其他同类分类模型。
Aiming at the issues of decreasing spatial resolution and feature loss caused by pooling operation in depth CNN-based hyperspectral image classification algorithm
a bilateral fusion block network (DFBN)composed of bilateral fusion blocks was designed.The upper structure of bilateral fusion block was constituted by 1×1 convolution and hyperlink
which was used to transfer local spatial characteristics.The lower structure was constituted by pooling layer
convolutional layer
deconvolution layer and upsampling to enhance the characteristics of efficient discrimination.Experimental results on three benchmark hyperspectral image data sets illustrate that the model is superior to other similar classification models.
LUO B , YANG C H , CHANUSSOT J , et al . Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2013 , 51 ( 1 ): 162 - 173 .
YUEN P W T , RICHARDSON M . An introduction to hyperspectral imaging and its application for security,surveillance and target acquisition [J ] . Imaging Science Journal , 2010 , 58 ( 5 ): 241 - 253 .
SANDIDGE J C , HOLYER R J . Coastal bathymetry from hyperspectral observations of water radiance [J ] . Remote Sensing of Environment , 1998 , 65 ( 3 ): 341 - 352 .
ZHANG L F , ZHANG L P , TAO D C , et al . Hyperspectral remote sensing image subpixel target detection based on supervised metric learning [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 8 ): 4955 - 4965 .
LI J , BIOUCAS-DIAS J M , PLAZA A . Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2010 , 48 ( 11 ): 4085 - 4098 .
SAMANIEGO L , BARDOSSY A , SCHULZ K . Supervised classification of remotely sensed imagery using a modified KNN technique [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2008 , 46 ( 7 ): 2112 - 2125 .
MELGANI F , BRUZZONE L . Classification of hyperspectral remote sensing images with support vector machines [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2004 , 42 ( 8 ): 1778 - 1790 .
WANG Q , LIN J Z , YUAN Y . Salient band selection for hyperspectral image classification via manifold ranking [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2016 , 27 ( 6 ): 1279 - 1289 .
JIA S , TANG G H , ZHU J S , et al . A novel ranking-based clustering approach for hyperspectral band selection [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2016 , 54 ( 1 ): 88 - 102 .
LICCIARDI G , MARPU P R , CHANUSSOT J , et al . Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles [J ] . IEEE Geoscience and Remote Sensing Letters , 2012 , 9 ( 3 ): 447 - 451 .
VILLA A , BENEDIKTSSON J A , CHANUSSOT J , et al . Hyperspectral image classification with independent component discriminant analysis [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2011 , 49 ( 12 ): 4865 - 4876 .
LIU X , ZHANG B , GAO L R , et al . A maximum noise fraction transform with improved noise estimation for hyperspectral images [J ] . Science in China Series F-information Sciences , 2009 , 52 ( 9 ): 1578 - 1587 .
MAKANTASIS K , KARANTZALOS K , DOULAMIS A , et al . Deep supervised learning for hyperspectral data classification through convolutional neural networks [C ] // 2015 IEEE International Geoscience and Remote Sensing Symposium . Piscataway:IEEE Press , 2015 : 4959 - 4962 .
GHAMISI P , PLAZA J , CHEN Y S , et al . Advanced spectral classifiers for hyperspectral images:a review [J ] . IEEE Geoscience and Remote Sensing Magazine , 2017 , 5 ( 1 ): 8 - 32 .
GAO W , PENG Y . Ideal kernel-based multiple kernel learning for spectral-spatial classification of hyperspectral image [J ] . IEEE Geoscience and Remote Sensing Letters , 2017 , 14 ( 7 ): 1051 - 1055 .
CHEN Y , NASRABADI N M , TRAN T D . Hyperspectral image classification via kernel sparse representation [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2013 , 51 ( 1 ): 217 - 231 .
CHEN P , NELSON J D B , TOURNERET J Y . Toward a sparse Bayesian Markov random field approach to hyperspectral unmixing and classification [J ] . IEEE Transactions on Image Processing , 2017 , 26 ( 1 ): 426 - 438 .
LECUN Y , BENGIO Y , HINTON G . Deep learning [J ] . Nature , 2015 , 521 ( 7553 ): 436 - 444 .
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . ImageNet classification with deep convolutional neural networks [J ] . Communications of the ACM , 2017 , 60 ( 6 ): 84 - 90 .
GIRSHICK R , DONAHUE J , DARRELL T , et al . Rich feature hierarchies for accurate object detection and semantic segmentation [C ] // 2014 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2014 : 580 - 587 .
CHEN Y S , LIN Z H , ZHAO X , et al . Deep learning-based classification of hyperspectral data [J ] . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2014 , 7 ( 6 ): 2094 - 2107 .
LIU P , ZHANG H , EOM K B . Active deep learning for classification of hyperspectral images [J ] . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2017 , 10 ( 2 ): 712 - 724 .
GHAMISI P , MAGGIORI E , LI S T , et al . New frontiers in spectral-spatial hyperspectral image classification the latest advances based on mathematical morphology,Markov random fields,segmentation,sparse representation,and deep learning [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 3 ): 10 - 43 .
LI S T , SONG W W , FANG L Y , et al . Deep learning for hyperspectral image classification:an overview [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 9 ): 6690 - 6709 .
ZHONG Z L , LI J , LUO Z M , et al . Spectral-spatial residual network for hyperspectral image classification:a 3D deep learning framework [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 2 ): 847 - 858 .
FENG F , WANG S T , WANG C Y , et al . Learning deep hierarchical spatial-spectral features for hyperspectral image classification based on residual 3D-2D CNN [J ] . Sensors , 2019 , 19 ( 23 ):5276.
HE K M , ZHANG X Y , REN S Q , et al . Deep residual learning for image recognition [C ] // 2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 770 - 778 .
LI J J , ZHAO X , LI Y S , et al . Classification of hyperspectral imagery using a new fully convolutional neural network [J ] . IEEE Geoscience and Remote Sensing Letters , 2018 , 15 ( 2 ): 292 - 296 .
MOU L C , GHAMISI P , ZHU X X . Unsupervised spectral–spatial feature learning via deep residual conv-deconv network for hyperspectral image classification [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 1 ): 391 - 406 .
MA X R , FU A Y , WANG J , et al . Hyperspectral image classification based on deep deconvolution network with skip architecture [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2018 , 56 ( 8 ): 4781 - 4791 .
LEE H , KWON H . Going deeper with contextual CNN for hyperspectral image classification [J ] . IEEE Transactions on Image Processing , 2017 , 26 ( 10 ): 4843 - 4855 .
GAO H M , YANG Y , LEI S , et al . Multi-branch fusion network for hyperspectral image classification [J ] . Knowledge-Based Systems , 2019 167 :11
0
浏览量
654
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构