浏览全部资源
扫码关注微信
1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
2. 奥本大学电子和计算机工程学院,奥本 36849
[ "张思成(1996- ),男,山东临沂人,哈尔滨工程大学博士生,主要研究方向为基于深度学习的智能电磁信号处理" ]
[ "林云(1980- ),男,黑龙江哈尔滨人,哈尔滨工程大学在站博士后,哈尔滨工程大学教授、博士生导师,主要研究方向为人工智能、深度学习、信号识别和智能信息对抗等" ]
[ "涂涯(1994- ),男,湖北十堰人,哈尔滨工程大学博士生,主要研究方向为信号处理、深度学习等" ]
[ "Shiwen Mao(1971- ),男,湖南岳阳人,博士,奥本大学教授,主要研究方向为无线网络、多媒体通信和智能电网" ]
网络出版日期:2020-11,
纸质出版日期:2020-11-25
移动端阅览
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020,41(11):12-21.
Sicheng ZHANG, Yun LIN, Ya TU, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on communications, 2020, 41(11): 12-21.
张思成, 林云, 涂涯, 等. 基于轻量级深度神经网络的电磁信号调制识别技术[J]. 通信学报, 2020,41(11):12-21. DOI: 10.11959/j.issn.1000-436x.2020237.
Sicheng ZHANG, Yun LIN, Ya TU, et al. Electromagnetic signal modulation recognition technology based on lightweight deep neural network[J]. Journal on communications, 2020, 41(11): 12-21. DOI: 10.11959/j.issn.1000-436x.2020237.
针对6G时代将会是移动通信与人工智能紧密结合的时代,产生数量庞大的边缘智能信号处理节点的趋势,提出了一种可部署于资源受限的边缘设备上的高效智能电磁信号识别模型。首先,通过绘制电磁信号的星座图将电磁信号具象为二维图像,并根据归一化点密度对星座图上色以实现特征增强;然后,使用二值化深度神经网络对其进行识别,在保证识别准确率的同时明显降低了模型存储开销以及计算开销。采用电磁信号调制识别
问题进行验证,实验选取常用的8种数字调制信号,选择加性高斯白噪声为信道环境。实验结果表明,所提方案可以在信噪比为-6~6 dB的噪声条件下获得96.1%的综合识别率,网络模型大小仅为166 KB,部署于树莓派4B的执行时间为290 ms,相比于同规模的全精度网络,准确率提升了0.6%,模型缩减到
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mtext>1</mtext> <mrow> <mtext>26</mtext><mo>.</mo><mtext>16</mtext></mrow> </mfrac> </math>
,运行时间缩减到
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mtext>1</mtext> <mrow> <mn>2.37</mn></mrow> </mfrac> </math>
。
In response to the trend that in the 6th generation wireless (6G) era
mobile communications and artificial intelligence will be closely integrated
and a huge number of edge intelligent signal processing nodes will be deployed
an efficient and intelligent electromagnetic signal recognition model was proposed
which could be deployed on resource-constrained edge devices.The constellation diagram of electromagnetic signal was firstly drawn to visualize electromagnetic signal as a two-dimensional image
and color the constellation diagram according to the normalized point density to achieve feature enhancement.Then
a binary deep neural network was adopted to recognize the colored constellation diagrams.It was shown that the approach can guarantee a high recognition accuracy
which significantly reduced the model storage and calculation costs.For verification
the proposed approach was applied to the problem of electromagnetic signal modulation recognition.The experiment uses eight commonly used digital modulation signals and selects additive white Gaussian noise as the channel environment.The experimental results show that the scheme can achieve a comprehensive recognition rate of 96.1% under the noise condition of -6~6 dB
while the size of the network model is only 166 KB.Further
the execution time
when executed on a Raspberry Pi 4B
is only 290 ms.Compared to a full-precision network of the same scale
the accuracy is increased by 0.6%
the model is reduced to
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mtext>1</mtext> <mrow> <mtext>26</mtext><mo>.</mo><mtext>16</mtext></mrow> </mfrac> </math>
and the running time is reduced to
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mtext>1</mtext> <mrow> <mn>2.37</mn></mrow> </mfrac> </math>
.
YOU X H , WANG C X , HUANG J , et al . Towards 6G wireless communication networks:Vision,enabling technologies,and new paradigm shifts [J ] . SCIENCE CHINA Information Sciences , 2021 , 64 ( 1 ): 1 - 84 .
张平 , 牛凯 , 田辉 , 等 . 6G 移动通信技术展望 [J ] . 通信学报 , 2019 , 40 ( 1 ): 141 - 148 .
ZHANG P , NIU K , TIAN H , et al . Technology prospect of 6G mobile communications [J ] . Journal on Communications , 2019 , 40 ( 1 ): 141 - 148 .
JAGANNATH A , JAGANNATH J , MELODIA T . Redefining wireless communication for 6G:signal processing meets deep learning [J ] . arXiv Preprint,arXiv:2004.10715 , 2020
LI B , LI S , HOU J , et al . A Bayesian approach for adaptively modulated signals recognition in next-generation communications [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 16 ): 4359 - 4372 .
WANG D S , ZHANG M , LI Z , et al . Modulation format recognition and OSNR estimation using CNN-based deep learning [J ] . IEEE Photonics Technology Letters , 2017 , 29 ( 19 ): 1667 - 1670 .
查雄 , 彭华 , 秦鑫 , 等 . 基于多端卷积神经网络的调制识别方法 [J ] . 通信学报 , 2019 , 40 ( 11 ): 30 - 37 .
ZHA X , PENG H , QIN X , et al . Modulation recognition method based on muti-inputs convolution neural network [J ] . Journal on Communications , 2019 , 40 ( 11 ): 30 - 37 .
PENG S L , JIANG H Y , WANG H X , et al . Modulation classification based on signal constellation diagrams and deep learning [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2018 , 30 ( 3 ): 718 - 727 .
吴佩军 , 侯进 , 吕志良 , 等 . 基于卷积神经网络的多进制相位调制信号识别算法 [J ] . 计算机应用与软件 , 2019 , 36 ( 11 ): 202 - 209 .
WU P J , HOU J , LYU Z L , et al . Multi-phase modulation signal recognition algorithm based on convolutional neural network [J ] . Computer Applications and Software , 2019 , 36 ( 11 ): 202 - 209 .
JI X F , WANG J , LI Y , et al . Modulation recognition in maritime multipath channels:a blind equalization-aided deep learning approach [J ] . China Communication , 2020 , 17 ( 3 ): 12 - 25 .
XU Y , LI D Z , WANG Z Y , et al . A deep learning method based on convolutional neural network for automatic modulation classification of wireless signals [J ] . Wireless Networks , 2019 . 25 ( 7 ): 3735 - 3746 .
桂冠 , 王禹 , 黄浩 . 基于深度学习的物理层无线通信技术:机遇与挑战 [J ] . 通信学报 , 2019 , 40 ( 2 ): 19 - 23 .
GUI G , WANG Y , HUANG H . Deep learning based physical layer wireless communication techniques:opportunities and challenges [J ] . Journal on Communications , 2019 , 40 ( 2 ): 19 - 23 .
TU Y , LIN Y . Deep neural network compression technique towards efficient digital signal modulation recognition in edge device [J ] . IEEE Access , 2019 , 7 : 58113 - 58119 .
HU H , PENG R , TAI Y W , et al . Network trimming:a data-driven neuron pruning approach towards efficient deep architectures [J ] . arXiv Preprint,arXiv:1607.03250 , 2016
LIN Y , TU Y , DOU Z . An improved neural network pruning technology for automatic modulation classification in edge devices [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 5 ): 5703 - 5706 .
O’SHEA T J , CORGAN J , CLANCY T C . Convolutional radio modulation recognition net-works [C ] // International Conference on Engineering Applications of Neural Networks . Piscataway:IEEE Press , 2016 : 213 - 222 .
陶冠宏 , 廖开升 , 周林 . 一种基于深度学习的电磁信号建模与调制识别新方法 [J ] . 电子信息对抗技术 , 2019 , 34 ( 5 ): 10 - 15 .
TAO G H , LIAO K S , ZHOU L . A novel signal modeling and modulation classification method with deep learning [J ] . Electronic Information Countermeasure Technology , 2019 , 34 ( 5 ): 10 - 15 .
周鑫 , 何晓新 , 郑昌文 . 基于图像深度学习的无线电信号识别 [J ] . 通信学报 , 2019 , 40 ( 7 ): 114 - 125 .
ZHOU X , HE X X , ZHENG C W . Radio signal recognition based on image deep learning [J ] . Journal on Communications , 2019 , 40 ( 7 ): 114 - 125 .
DETTMERS T . 8 bit approximations for parallelism in deep learning [J ] . arXiv Preprint,arXiv:1511.04561 , 2015
GUPTA S , AGRAWAL A , GOPALAKRISHNAN K , et al . Deep learning with limited numerical precision [C ] // International Conference on Machine Learning . New York:ACM Press , 2015 : 1737 - 1746 .
ZHU C , HAN S , MAO H , et al . Trained ternary quantization [J ] . arXiv Preprint,arXiv:1612.01064 , 2016
COURBARIAUX M , BENGIO Y , DAVID J P . Binaryconnect:training deep neural networks with binary weights during propagations [C ] // Advances in Neural Information Processing Systems . New York:ACM Press , 2015 : 3123 - 3131 .
QIN H , GONG R , LIU X , et al . Binary neural networks:a survey [J ] . Pattern Recognition , 2020 , 105 : 1737 - 1746 .
KRIZHEVSKY A , SUTSKEVER I , HINTON G E . Imagenet classification with deep convolutional neural networks [C ] // Proceedings of the 25th International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2012 : 1097 - 1105 .
ZHANG J , PAN Y , YAO T , et al . DABNN:a super fast inference framework for binary neural networks on arm devices [C ] // Proceedings of the 27th ACM International Conference on Multimedia . New York:ACM Press , 2019 : 2272 - 2275 .
O'SHEA T J , ROY T , CLANCY T C . Over-the-air deep learning based radio signal classification [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 168 - 179 .
0
浏览量
1875
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构