浏览全部资源
扫码关注微信
南京邮电大学通信与信息工程学院,江苏 南京 210003
[ "赵羽(1996- ),男,江苏泰州人,南京邮电大学博士生,主要研究方向为基于深度学习的智能视频分析" ]
[ "杨洁(1980- ),女,江苏南京人,博士,南京邮电大学讲师,主要研究方向为基于深度学习的智能视频分析" ]
[ "刘淼(1988- ),男,江苏淮安人,博士,南京邮电大学讲师,主要研究方向为基于深度学习的智能通信" ]
[ "孙金龙(1988- ),男,河南洛阳人,博士,南京邮电大学讲师,主要研究方向为基于深度学习的智能通信" ]
[ "桂冠(1982- ),男,安徽枞阳人,博士,南京邮电大学教授,主要研究方向为基于深度学习的物理层无线通信技术" ]
网络出版日期:2020-10,
纸质出版日期:2020-10-25
移动端阅览
赵羽, 杨洁, 刘淼, 等. 面向视频监控基于联邦学习的智能边缘计算技术[J]. 通信学报, 2020,41(10):109-115.
Yu ZHAO, Jie YANG, Miao LIU, et al. Federated learning based intelligent edge computing technique for video surveillance[J]. Journal on communications, 2020, 41(10): 109-115.
赵羽, 杨洁, 刘淼, 等. 面向视频监控基于联邦学习的智能边缘计算技术[J]. 通信学报, 2020,41(10):109-115. DOI: 10.11959/j.issn.1000-436x.2020192.
Yu ZHAO, Jie YANG, Miao LIU, et al. Federated learning based intelligent edge computing technique for video surveillance[J]. Journal on communications, 2020, 41(10): 109-115. DOI: 10.11959/j.issn.1000-436x.2020192.
随着全球数据量的激增,集中式云计算无法提供低时延、高效率的视频监控服务。基于此,提出分布式边缘计算模型,在边缘端直接处理视频数据,减少网络的传输压力,缓解中央云服务器的计算负担,降低视频监控系统的处理时延。结合联邦学习算法,采用轻量级神经网络,分场景训练模型,并将其部署于计算能力受限的边缘设备上。实验结果表明,对比通用神经网络模型,所提方法检测准确度提高18%,模型训练时间有效减少。
With the explosion of global data
centralized cloud computing cannot provide low-latency
high-efficiency video surveillance services.A distributed edge computing model was proposed
which directly processed video data at the edge node to reduce the transmission pressure of the network
eased the computational burden of the central cloud server
and reduced the processing delay of the video surveillance system.Combined with the federated learning algorithm
a lightweight neural network was used
which trained in different scenarios and deployed on edge devices with limited computing power.Experimental results show that
compared with the general neural network model
the detection accuracy of the proposed method is improved by 18%
and the model training time is reduced.
Al-FUQAHA A , GUIZANI M , MOHAMMADI M . Internet of things:a survey on enabling technologies,protocols,and applications [J ] . IEEE Communications Surveys & Tutorials , 2015 , 17 ( 4 ): 2347 - 2376 .
SADOOGHI I , MARTIN J H , LI T L . Understanding the performance and potential of cloud computing for scientific applications [J ] . IEEE Transactions on Cloud Computing , 2017 , 5 ( 2 ): 358 - 371 .
张平 , 陶运铮 , 张治 . 5G 若干关键技术评述 [J ] . 通信学报 , 2016 , 37 ( 7 ): 15 - 29 .
ZHANG P , TAO Y Z , ZHANG Z . Survey of several key technologies for 5G [J ] . Journal on Communications , 2016 , 37 ( 7 ): 15 - 29 .
桂冠 , 王禹 , 黄浩 . 基于深度学习的物理层无线通信技术:机遇与挑战 [J ] . 通信学报 , 2019 , 40 ( 2 ): 19 - 23 .
GUI G , WANG Y , HUANG H . Deep learning based physical layer wireless communication techniques:opportunities and challenges [J ] . Journal on Communications , 2019 , 40 ( 2 ): 19 - 23 .
施巍松 , 孙辉 , 曹杰 . 边缘计算:万物互联时代新型计算模型 [J ] . 计算机研究与发展 , 2017 , 54 ( 5 ): 907 - 924 .
SHI W S , SUN H , CAO J . Edge computing:an emerging computing model for the internet of everything era [J ] . Journal of Computer Research and Development , 2017 , 54 ( 5 ): 907 - 924 .
SHI W S , CAO J , ZHANG Q . Edge computing:vision and challenges [J ] . IEEE Internet of Things Journal , 2016 , 3 ( 5 ): 637 - 646 .
MHALLA A , CHATEAU T , GAZZAH S . An embedded computer-vision system for multi-object detection in traffic surveillance [J ] . IEEE Transactions on Intelligent Transportation Systems , 2019 , 20 ( 11 ): 4006 - 4018 .
HU L , NI Q . IoT-driven automated object detection algorithm for urban surveillance systems in smart cities [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 2 ): 747 - 754 .
ZHANG X Y , ZHOU X Y , LIN M X . ShuffleNet:an extremely efficient convolutional neural network for mobile devices [C ] // 2018 IEEE Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE Press , 2018 : 6848 - 6856 .
HOWARD A , ZHU M L , CHEN B . MobileNets:efficient convolutional neural networks for mobile vision applications [J ] . arXiv Preprint,arXiv:1704.04861 , 2017
TAN M X , CHEN B , PANG R M . MnasNet:platform-aware neural architecture search for mobile [C ] // 2018 IEEE Conference on Computer Vision and Pattern Recognition,Piscataway:IEEE Press , 2019 : 2815 - 2823 .
吕华章 , 陈丹 , 范斌 . 边缘计算标准化进展与案例分析 [J ] . 计算机研究与发展 , 2018 , 55 ( 3 ): 487 - 511 .
LYU H Z , CHEN D , FAN B . Standardization progress and case analysis of edge computing [J ] . Journal of Computer Research and Development , 2018 , 55 ( 3 ): 487 - 511 .
张佳乐 , 赵彦超 , 陈兵 . 边缘计算数据安全与隐私保护研究综述 [J ] . 通信学报 , 2018 , 39 ( 3 ): 1 - 21 .
ZHANG J L , ZHAO Y C , CHEN B . Survey on data security and privacy-preserving for the research of edge computing [J ] . Journal on Communications , 2018 , 39 ( 3 ): 1 - 21 .
YANG Q , LIU Y , CHEN T . Federated machine learning:concept and applications [J ] . ACM Transactions on Intelligent Systems and Technology , 2019 , 10 ( 2 ): 1 - 9 .
REDMON J , FARHADI A . YOLOv3:an incremental improvement [J ] . arXiv Preprint,arXiv:1804.02767 , 2018
PAN S J , YANG Q . A survey on transfer learning [J ] . IEEE Transactions on Knowledge and Data Engineering , 2010 , 22 ( 10 ): 1345 - 1359 .
ZHANG Z , HE T , ZHANG H . Bag of freebies for training object detection neural networks [J ] . arXiv Preprint,arXiv:1902.04103 , 2019
0
浏览量
2721
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构