浏览全部资源
扫码关注微信
1. 浙江理工大学信息学院,浙江 杭州 310018
2. 大连大学信息工程学院,辽宁 大连 116622
3. 五邑大学智能制造学部,广东 江门 529020
4. 杭州电子科技大学电子信息学院,浙江 杭州 310018
[ "王洪雁(1979– ),男,河南南阳人,博士,浙江理工大学特聘教授、硕士生导师,主要研究方向为稀疏学习、阵列信号处理、参数估计、机器视觉等" ]
[ "王拓(1992– ),男,河南南阳人,大连大学硕士生,主要研究方向为数字图像处理、机器视觉等" ]
[ "潘勉(1985– ),男,浙江丽水人,博士,杭州电子科技大学讲师、硕士生导师,主要研究方向为稀疏学习、图像处理、机器视觉等" ]
[ "汪祖民(1975– ),男,河南信阳人,博士,大连大学教授、硕士生导师,主要研究方向为信号处理、机器学习等" ]
网络出版日期:2020-10,
纸质出版日期:2020-10-25
移动端阅览
王洪雁, 王拓, 潘勉, 等. 基于伽马范数最小化的图像去噪算法[J]. 通信学报, 2020,41(10):222-234.
Hongyan WANG, Tuo WANG, Mian PAN, et al. Gamma norm minimization based image denoising algorithm[J]. Journal on communications, 2020, 41(10): 222-234.
王洪雁, 王拓, 潘勉, 等. 基于伽马范数最小化的图像去噪算法[J]. 通信学报, 2020,41(10):222-234. DOI: 10.11959/j.issn.1000-436x.2020190.
Hongyan WANG, Tuo WANG, Mian PAN, et al. Gamma norm minimization based image denoising algorithm[J]. Journal on communications, 2020, 41(10): 222-234. DOI: 10.11959/j.issn.1000-436x.2020190.
针对核范数有偏近似秩函数导致基于核范数最小化的传统去噪方法去噪性能较差的问题,基于低秩理论,提出一种基于伽马范数最小化的图像去噪算法。首先对噪声图像重叠分块,然后基于结构相似性指数自适应搜索与当前图像块最相似的若干非局部图像块以组成相似图像块矩阵,进而利用非凸伽马范数无偏近似矩阵秩函数构建低秩去噪模型,最后基于奇异值分解对所得低秩去噪优化问题求解,并将去噪图像块重组为去噪图像。仿真结果表明,与现有主流PID、NLM、BM3D、NNM、WNNM、DnCNN和FFDNet算法相比,所提算法可较显著地消除高斯噪声,且可较好地恢复原始图像细节。
Focusing on the issue of rather poor denoising performance of the traditional kernel norm minimization based method caused by the biased approximation of kernel norm to rank function
based on the low-rank theory
a gamma norm minimization based image denoising algorithm was developed.The noisy image was firstly divided into some overlapping patches via the proposed algorithm
and then several non-local image patches most similar to the current image patch were sought adaptively based on the structural similarity index to form the similar image patch matrix.Subsequently
the non-convex gamma norm could be exploited to obtain unbiased approximation of the matrix rank function such that the low-rank denoising model could be constructed.Finally
the obtained low-rank denoising optimization issue could be tackled on the basis of singular value decomposition
and therefore the denoised image patches could be re-constructed as a denoised image.Simulation results demonstrate that
compared to the existing state-of-the-art PID
NLM
BM3D
NNM
WNNM
DnCNN and FFDNet algorithms
the developed method can eliminate Gaussian noise more considerably and retrieve the original image details rather precisely.
YAO S K , CHANG Y , QIN X J , et al . Principal component dictionary-based patch grouping for image denoising [J ] . Journal of Visual Communication and Image Representation , 2018 , 50 ( 2 ): 111 - 122 .
YAIR N , MICHAELI T . Multi-scale weighted nuclear norm image restoration [C ] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2018 : 3165 - 3174 .
ZHA Z Y , ZHANG X G , WANG Q , et al . Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior [J ] . Neurocomputing , 2018 , 275 ( 2 ): 2294 - 2306 .
LI H , TANG G J , LIU X H , et al . An enhanced image denoising method using method noise [C ] // 2017 IEEE International Conference on Signal Processing . Piscataway:IEEE Press , 2017 : 1 - 6 .
PORTILLA J , STRELA V , WAINWRIGHT M J , et al . Image denoising using scale mixtures of Gaussians in the wavelet domain [J ] . IEEE Transactions on Image processing , 2003 , 12 ( 11 ): 1338 - 1351 .
CHAMBOLLE A . An algorithm for total variation minimization and applications [J ] . Journal of Mathematical Imaging and Vision , 2004 , 20 ( 1-2 ): 89 - 97 .
KNAUS C , ZWICKER M . Progressive image denoising [J ] . IEEE Transactions on Image Processing , 2014 , 23 ( 7 ): 3114 - 3125 .
FOI A , BORACCHI G . Foveated nonlocal self-similarity [J ] . International Journal of Computer Vision , 2016 , 120 ( 1 ): 78 - 110 .
BUADES A , COLL B , MOREL J M . A non-local algorithm for image denoising [C ] // 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2005 : 60 - 65 .
DABOV K , FOI A , KATKOVNIK V , et al . Image denoising by sparse 3-D transform-domain collaborative filtering [J ] . IEEE Transactions on Image Processing , 2007 , 16 ( 8 ): 2080 - 2095 .
DONG W S , ZHANG L , SHI G M , et al . Nonlocally centralized sparse representation for image restoration [J ] . IEEE Transactions on Image Processing , 2013 , 22 ( 4 ): 1620 - 1630 .
KUMAR A , AHMAD M O , SWAMY M N S . An efficient denoising framework using weighted overlapping group sparsity [J ] . Information Sciences , 2018 , 454 ( 2 ): 292 - 311 .
WANG S L , ZHANG L , LIANG Y . Nonlocal spectral prior model for low-level vision [C ] // Asian Conference on Computer Vision . New York:ACM Press , 2012 : 231 - 244 .
JI H , LIU C Q , SHEN Z W , et al . Robust video denoising using low rank matrix completion [C ] // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2010 : 1791 - 1798 .
GU S H , XIE Q , MENG D Y , et al . Weighted nuclear norm minimization and its applications to low level vision [J ] . International Journal of Computer Vision , 2017 , 121 ( 2 ): 183 - 208 .
CHO S I , KANG S J . Gradient prior-aided CNN denoiser with separable convolution-based optimization of feature dimension [J ] . IEEE Transactions on Multimedia , 2018 , 21 ( 2 ): 484 - 493 .
ZHANG K , ZUO W M , CHEN Y J , et al . Beyond a gaussian denoiser:residual learning of deep CNN for image denoising [J ] . IEEE Transactions on Image Processing , 2017 , 26 ( 7 ): 3142 - 3155 .
ZHANG K , ZUO W M , ZHANG L . FFDNet:toward a fast and flexible solution for CNN-based image denoising [J ] . IEEE Transactions on Image Processing , 2018 , 27 ( 9 ): 4608 - 4622 .
BINH P H T , CRUZ C , EGIAZARIAN K . Flashlight CNN image denoising [J ] . arXiv preprint,arXiv:2003.00762 , 2020
WANG S S , LIU D H , ZHANG Z H . Nonconvex relaxation approach es to robust matrix recovery [C ] // International Joint Conference on Artificial Intelligence . Piscataway:IEEE Press , 2013 : 1764 - 1770 .
WANG H Y , CEN Y G , HE Z Q , et al . Reweighted low-rank matrix analysis with structural smoothness for image denoising [J ] . IEEE Transactions on Image Processing , 2018 , 27 ( 4 ): 1777 - 1792 .
STARK C J . Learning optimal quantum models is NP-hard [J ] . Physical Review A , 2018 , 97 ( 2 ): 97 - 103 .
CAI J F,CANDÈS E J , SHEN Z W . A singular value thresholding algorithm for matrix completion [J ] . SIAM Journal on Optimization , 2010 , 20 ( 4 ): 1956 - 1982 .
ZHANG H M , YANG J , XIE J C , et al . Weighted sparse coding regularized nonconvex matrix regression for robust face recognition [J ] . Information Sciences , 2017 , 394 ( 2 ): 1 - 17 .
DONG W S , SHI G M , LI X . Nonlocal image restoration with bilateral variance estimation:a low-rank approach [J ] . IEEE Transactions on Image Processing , 2013 , 22 ( 2 ): 700 - 711 .
WANG Z , BOVIK A C , SHEIKH H R , et al . Image quality assessment:from error visibility to structural similarity [J ] . IEEE Transactions on Image Processing , 2004 , 13 ( 4 ): 600 - 612 .
ZHANG C H . Nearly unbiased variable selection under minimax concave penalty [J ] . The Annals of Statistics , 2010 , 38 ( 2 ): 894 - 942 .
OSHER S , BURGER M , GOLDFARB D , et al . An iterative regularization method for total variation based image restoration [C ] // 2011 IEEE International Conference on Imaging Systems and Techniques . Piscataway:IEEE Press , 2011 : 170 - 175 .
THU Q , GHANBARI M . Scope of validity of PSNR in image/video quality assessment [J ] . Electronics letters , 2008 , 44 ( 13 ): 800 - 801 .
PALUBINSKAS G , . Mystery behind similarity measures MSE and SSIM [C ] // 2014 IEEE International Conference on Image Processing (ICIP) . Piscataway:IEEE Press , 2014 : 575 - 579 .
0
浏览量
215
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构