浏览全部资源
扫码关注微信
1. 信息工程大学密码工程学院,河南 郑州 450001
2. 郑州大学软件学院,河南 郑州 450000
[ "胡永进(1981- ),男,山东潍坊人,信息工程大学讲师,主要研究方向为主动防御、态势感知" ]
[ "郭渊博(1975- ),男,陕西周至人,博士,信息工程大学教授、博士生导师,主要研究方向为大数据安全、态势感知" ]
[ "马骏(1981- ),男,山西阳泉人,博士,信息工程大学副教授,主要研究方向为态势感知与威胁发现" ]
[ "张晗(1985- ),女,河南项城人,信息工程大学博士生,主要研究方向为自然语言处理、信息安全" ]
[ "毛秀青(1980- ),男,安徽滁州人,信息工程大学副教授,主要研究方向为人工智能安全" ]
网络出版日期:2020-09,
纸质出版日期:2020-09-25
移动端阅览
胡永进, 郭渊博, 马骏, 等. 基于对抗样本的网络欺骗流量生成方法[J]. 通信学报, 2020,41(9):59-70.
Yongjin HU, Yuanbo GUO, Jun MA, et al. Method to generate cyber deception traffic based on adversarial sample[J]. Journal on communications, 2020, 41(9): 59-70.
胡永进, 郭渊博, 马骏, 等. 基于对抗样本的网络欺骗流量生成方法[J]. 通信学报, 2020,41(9):59-70. DOI: 10.11959/j.issn.1000-436x.2020166.
Yongjin HU, Yuanbo GUO, Jun MA, et al. Method to generate cyber deception traffic based on adversarial sample[J]. Journal on communications, 2020, 41(9): 59-70. DOI: 10.11959/j.issn.1000-436x.2020166.
为了应对流量分类攻击,从防御者的角度出发,提出了一种基于对抗样本的网络欺骗流量生成方法。通过在正常的网络流量中增加扰动,形成欺骗流量的对抗样本,使攻击者在实施以深度学习模型为基础的流量分类攻击时出现分类错误,欺骗攻击者从而导致攻击失败,并造成攻击者时间和精力的消耗。采用几种不同的扰动生成方法形成网络流量对抗样本,选择LeNet-5深度卷积神经网络作为攻击者使用的流量分类模型实施欺骗,通过实验验证了所提方法的有效性,为流量混淆和欺骗提供了新的方法。
In order to prevent attacker traffic classification attacks
a method for generating deception traffic based on adversarial samples from the perspective of the defender was proposed.By adding perturbation to the normal network traffic
an adversarial sample of deception traffic was formed
so that an attacker could make a misclassification when implementing a traffic analysis attack based on a deep learning model
achieving deception effect by causing the attacker to consume time and energy.Several different methods for crafting perturbation were used to generate adversarial samples of deception traffic
and the LeNet-5 deep convolutional neural network was selected as a traffic classification model for attackers to deceive.The effectiveness of the proposed method is verified by experiments
which provides a new method for network traffic obfuscation and deception.
FRANK J . Artificial intelligence and intrusion detection:current and future directions [J ] . Computers & Security , 1995 , 14 ( 1 ):31.
SZEGEDY C , ZAREMBA W , SUTSKEVER I , et al . Intriguing properties of neural networks [J ] . arXiv Preprint,arXiv:1312.6199 , 2013
SITAWARIN C , BHAGOJI AN , MOSENIA A , et al . Rogue signs:deceiving traffic sign recognition with malicious ads and logos [J ] . arXiv Preprint,arXiv:1801.02780 , 2018
YANG K , LIU J , ZHANG C , et al . Adversarial examples against the deep learning based network intrusion detection system [C ] // 2018 IEEE Military Communications Conference . Piscataway:IEEE Press , 2018 : 559 - 564 .
HU W W , TAN Y . Generating adversarial malware examples for black-box attacks based on GAN [J ] . arXiv Preprint,arXiv:1702.05983 , 2017
熊刚 , 孟姣 , 曹自刚 , 等 . 网络流量分类研究进展与展望 [J ] . 集成技术 , 2012 , 1 ( 1 ): 32 - 42 .
XIONG G , MENG J , CAO Z G , et al . Research progress and prospects of network traffic classification [J ] . Journal of Integration Technology , 2012 , 1 ( 1 ): 32 - 42 .
WANG Z . The applications of deep learning on tracidentification [J ] . BlackHat USA , 2015 , 24 ( 11 ): 21 - 26 .
WANG W , ZHU M , WANG J , et al . End-to-end encrypted traffic classification with one-dimensional convolution neural networks [C ] // 2017 IEEE International Conference on Intelligence and Security Informatics . Piscataway:IEEE Press , 2017 : 43 - 48 .
RIMMER V , PREUVENEERS D , JUAREZ M , et al . Automated website fingerprinting through deep learning [J ] . arXiv Preprint,arXiv:1708.06376 , 2017
WANG W , ZHU M , ZENG X , et al . Malware traffic classification using convolutional neural network for representation learning [C ] // 2017 International Conference on Information Networking . Piscataway:IEEE Press , 2017 : 712 - 717 .
PANCHENKO A , NIESSEN L , ZINNEN A , et al . Website fingerprinting in onion routing based anonymization networks [C ] // Proceedings of 27 the 10th annual ACM workshop on Privacy in the electronic society . New York:ACM Press , 2011 : 103 - 114 .
DYER K P , COULL S E , RISTENPART T , et al . Peek-a-boo,i still see you:why efficient traffic analysis countermeasures fail [C ] // 2012 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2012 : 332 - 346 .
CUI W , YU J , GONG Y , et al . Realistic cover traffic to mitigate website fingerprinting attacks [C ] // 2018 IEEE 38th International Conference on Distributed Computing Systems . Piscataway:IEEE Press , 2018 : 1579 - 1584 .
WANG T , GOLDBERG I . Walkie-talkie:an efficient defense against passive website fingerprinting attacks [C ] // Proceedings of the 26th USENIX Security Symposium . Berkeley:USENIX Association , 2017 : 1375 - 1390 .
DINGLEDINE R . Obfsproxy:the next step in the censorship arms race [R ] . TOR Project official ,(2012-05-23)[2020-03-20 ] .
MOGHADDAM H , LI B , DERAKHSHANI M , et al . SkypeMorph:protocol obfuscation for TOR bridges [C ] // Proceedings of the 2012 ACM Conference on Computer and Communications Security . New York:ACM Press , 2012 : 97 - 108 .
LI F F , KAKHKI A M , CHOFFNES D , et al . Classifiers unclassified:an efficient approach to revealing IP traffic classification rules [C ] // Proceedings of the 2016 Internet Measurement Conference . New York:ACM Press , 2016 : 239 - 245 .
张思思 , 左信 , 刘建伟 . 深度学习中的对抗样本问题 [J ] . 计算机学报 , 2019 , 42 ( 8 ): 1886 - 1904 .
ZHANG S S , ZUO X , LIU J W . The problem of the adversarial exam-ples in deep learning [J ] . Chinese Journal of Computers , 2019 , 42 ( 8 ): 1886 - 1904 .
GOODFELLOW I , SHLENS J , SZEGEDY C . Explaining and harnessing adversarial examples [J ] . arXiv Preprint,arXiv:1412.6572 , 2014
KURAKIN A , GOODFELLOW I , BENGIO S . Adversarial examples in the physical world [J ] . arXiv Preprint,arXiv:1607.02533 , 2016
MOOSAVI-DEZFOOLI S M , FAWZI A , FAWZI O , et al . Universal Adversarial Perturbations [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2017 : 1765 - 1773 .
ATHALYE A , ENGSTROM L , ILYAS A , et al . Synthesizing robust adversarial examples [J ] . arXiv Preprint,arXiv:1707.07397 , 2017
MOOSAVI-DEZFOOLI S M , FAWZI A , FROSSARD P . DeepFool:a simple and accurate method to fool deep neural networks [C ] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2016 : 2574 - 2582 .
METZEN J H , KUMAR M C , BROX T , et al . Universal adversarial perturbations against semantic image segmentation [C ] // The IEEE International Conference on Computer Vision . Piscataway:IEEE Press , 2017 : 2755 - 2764 .
MOPURI K R , GARG U , BAHU R V . Fast feature fool:a data independent approach to universal adversarial perturbations [J ] . arXiv Preprint,arXiv:1707.05572 , 2017
MOPURI K R , GANESHAN A , BABU R V . Generalizable data-free objective for crafting universal adversarial perturbations [C ] // IEEE Transactions on Pattern Analysis and Machine Intelligence . Piscataway:IEEE Press , 2019 , 41 ( 10 ): 2452 - 2465 .
VERMA G , CIFTCIOGLU E , SHEATSLEY R , et al . Network traffic obfuscation:an adversarial machine learning approach [C ] // 2018 IEEE Military Communications Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
潘文雯 , 王新宇 , 宋明黎 , 等 . 对抗样本生成技术综述 [J ] . 软件学报 , 2020 , 31 ( 1 ): 67 - 81 .
PAN W W , WANG X Y , SONG M L , et al . Survey on generating ad-versarial examples [J ] . Journal of Software , 2020 , 31 ( 1 ): 67 - 81 .
CARLINI N , WAGNER D . Towards evaluating the robustness of neural networks [C ] // 2017 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2017 : 39 - 57 .
HE K M , SUN J . Convolutional neural networks at constrained time cost [C ] // The IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2015 : 5353 - 5360 .
MOORE A W , ZUEV D . Discriminators for use in flow-based classification [R ] . Intel Research,Cambridge ,(2005-08)[2020-03-19 ] .
LENCUN Y , BOTTOU L , BENGIO Y . Gradient-based learning applied to document recognition [J ] . Proceedings of the IEEE , 1998 , 862 : 2278 - 2324
王勇 , 周慧怡 , 俸皓 , 等 . 基于深度卷积神经网络的网络流量分类方法 [J ] . 通信学报 , 2018 , 39 ( 1 ): 14 - 23 .
WANG Y , ZHOU H Y , FENG H , et al . Network traffic classification method basing on CNN [J ] . Journal on Communications , 2018 , 39 ( 1 ): 14 - 23 .
0
浏览量
1482
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构