浏览全部资源
扫码关注微信
南京邮电大学江苏省无线通信重点实验室,江苏 南京 210003
[ "朱晓荣(1977- ),女,山东临沂人,博士,南京邮电大学教授、博士生导师,主要研究方向为5G通信系统、异构网络、物联网等关键技术及系统研发" ]
[ "张佩佩(1995- ),女,山东菏泽人,南京邮电大学硕士生,主要研究方向为 4G/5G网络故障诊断、网络故障预测等" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-25
移动端阅览
朱晓荣, 张佩佩. 基于GAN的异构无线网络故障检测与诊断算法[J]. 通信学报, 2020,41(8):110-119.
Xiaorong ZHU, Peipei ZHANG. Fault detection and diagnosis method for heterogeneous wireless network based on GAN[J]. Journal on communications, 2020, 41(8): 110-119.
朱晓荣, 张佩佩. 基于GAN的异构无线网络故障检测与诊断算法[J]. 通信学报, 2020,41(8):110-119. DOI: 10.11959/j.issn.1000-436x.2020165.
Xiaorong ZHU, Peipei ZHANG. Fault detection and diagnosis method for heterogeneous wireless network based on GAN[J]. Journal on communications, 2020, 41(8): 110-119. DOI: 10.11959/j.issn.1000-436x.2020165.
针对异构无线网络故障检测与诊断过程中,如何基于小数据量样本进行准确的故障检测与诊断模型的训练的问题,提出了基于生成对抗网络的异构无线网络故障检测与诊断算法。首先,分析了异构无线网络环境下的常见网络故障来源,通过 GAN 算法,在小数据量的网络故障样本的基础上,得到大量可靠数据集。然后,基于这些数据,利用极端梯度提升算法选择故障检测阶段输入参数的最优特征组合,并完成故障检测与诊断。仿真结果表明,所提算法可以实现对异构无线网络更加准确而高效的故障检测与诊断,准确率可达98.18%。
Aiming at the problem that in the process of network fault detection and diagnosis
how to train the precise fault diagnosis and detection model based on small data volume
a fault diagnosis and detection algorithm based on generative adversarial networks (GAN) for heterogeneous wireless networks was proposed.Firstly
the common network fault sources in heterogeneous wireless network environment was analyzed
and a large number of reliable data sets was obtained based on a small amount of network fault samples through GAN algorithm.Then
the extreme gradient boosting (XGBoost) algorithm was used to select the optimal feature combination of input parameters in the fault detection stage and completed fault diagnosis and detection based on these data.Simulation results show that the algorithm can achieve more accurate and efficient fault detection and diagnosis for heterogeneous wireless networks
with an accuracy of 98.18%.
STEINDER M , SETHI A . A survey of fault localization techniques in computer networks [J ] . Science of Computer Programming , 2004 , 53 ( 2 ): 165 - 194 .
SZILAGYI P , NOVACZKI S . An automatic detection and diagnosis framework for mobile communication systems [J ] . IEEE Transactions on Network and Service Management , 2012 , 9 ( 2 ): 184 - 197 .
BARCO R , LAZARO P , DIEZ L , et al . Continuous versus discrete model in autodiagnosis systems for wireless networks [J ] . IEEE Transactions on Mobile Computing , 2008 , 7 ( 2 ): 673 - 681 .
KHANAFER R M , SOLANA B , TRIOLA J , et al . Automated diagnosis for UMTS networks using Bayesian network approach [J ] . IEEE Transactions on Vehicular Technology , 2008 , 57 ( 4 ): 2451 - 2461 .
BARCO R , WILLE V , DÍEZ V , et al . Learning of model parameters for fault diagnosis in wireless networks [J ] . Wireless Networks , 2010 , 16 ( 1 ): 255 - 271 .
KHATIB E J , BARCO R , ANDRADES A G , et al . Diagnosis based on genetic fuzzy algorithms for LTE self-healing [J ] . IEEE Transactions on Vehicular Technology , 2015 , 65 ( 3 ):1.
5G Alliance . Description of network slicing concept [R ] . NGMN ,(2016-01)[2020-01-14 ] .
ETSI . Network functions virtualisation (NFV); architectural framework:ETSI GS NFV 002 V1.2.1 [R ] .(2014-12)[2020-01-14 ] .
KUKLIŃSKI S , TOMASZEWSKI L . Key performance indicators for 5G network slicing [C ] // 2019 IEEE Conference on Network Softwarization . Piscataway:IEEE Press , 2019 : 464 - 471 .
MFULA H , NURMINEN J . Adaptive root cause analysis for self-healing in 5G networks [C ] // 2017 International Conference on High Performance Computing & Simulation . Piscataway:IEEE Press , 2017 : 136 - 143 .
GOODFELLOW I J , POUGET-ABADIE J , MIRZA M , et al . Generative adversarial nets [C ] // International Conference on Neural Information Processing Systems . Massachusetts:MIT Press , 2014 : 2672 - 2680 .
ARJOVSKY M , BOTTOU L . Towards principled methods for training generative adversarial networks [J ] . arXiv Preprint,arXiv:1701.04862 , 2017
LIU H , GU X , SAMARAS D . Wasserstein GAN with quadratic transport cost [C ] // 2019 IEEE/CVF International Conference on Computer Vision . Piscataway:IEEE Press , 2019 : 4831 - 4840 .
WILLE V , BRIMER A , DAVIES G , et al . A simple and fast method for identification of missing adjacencies in WCDMA networks [C ] // IEEE International Conference on 3G & Beyond . Piscataway:IEEE Press , 2005 : 132 - 139 .
BETTSTETTER C , FITZEK F , HARTENSTEIN H , et al . Special issue on self-organization in mobile networking [J ] . European Transactions on Telecommunications , 2005 , 16 ( 5 ): 371 - 373 .
GULRAJANI I , AHMED F , ARJOVSKY M , et al . Improved training of Wasserstein GANs [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2017 : 5767 - 5777 .
CHEN T , GUESTRIN C . XGBoost:a scalable tree boosting system [C ] // ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 785 - 794 .
FRIEDMAN J H . Greedy function approximation:a gradient boosting machine [J ] . Annals of Statistics , 2001 , 29 ( 5 ): 1189 - 1232 .
0
浏览量
1003
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构