浏览全部资源
扫码关注微信
1. 中山大学电子与通信工程学院,广东 广州 510006
2. 中山大学数据科学与计算机学院,广东 广州 510006
3. 中山大学广东省信息安全重点实验室,广东 广州 510006
4. 中山大学电子与信息工程学院,广东 广州 5100063
[ "王千帆(1992– ),男,河南焦作人,中山大学博士生,主要研究方向为信道编码及其在无线通信中的应用" ]
[ "毕胜(1996– ),男,湖南常德人,中山大学硕士生,主要研究方向为信道编码与机器学习" ]
[ "陈曾喆(1996- ),男,广东汕头人,中山大学硕士生,主要研究方向为信道编码中的低时延译码技术" ]
[ "陈立(1981– ),男,广东揭西人,博士,中山大学教授、博士生导师,主要研究方向为信息与编码理论、数据通信等" ]
[ "马啸(1968– ),男,河南焦作人,博士,中山大学教授、博士生导师,主要研究方向为信息与编码理论、编码调制技术、无线通信、光通信等" ]
网络出版日期:2020-09,
纸质出版日期:2020-09-25
移动端阅览
王千帆, 毕胜, 陈曾喆, 等. 分组马尔可夫叠加传输的神经网络译码[J]. 通信学报, 2020,41(9):202-209.
Qianfan WANG, Sheng BI, Zengzhe CHEN, et al. Neural network decoding of the block Markov superposition transmission[J]. Journal on communications, 2020, 41(9): 202-209.
王千帆, 毕胜, 陈曾喆, 等. 分组马尔可夫叠加传输的神经网络译码[J]. 通信学报, 2020,41(9):202-209. DOI: 10.11959/j.issn.1000-436x.2020158.
Qianfan WANG, Sheng BI, Zengzhe CHEN, et al. Neural network decoding of the block Markov superposition transmission[J]. Journal on communications, 2020, 41(9): 202-209. DOI: 10.11959/j.issn.1000-436x.2020158.
研究了分组马尔可夫叠加传输的神经网络(NN)译码方案。利用NN,实现了不同网络结构、数据表征形式的基本码译码器。在此基础上,将所实现的基本码译码器嵌入迭代译码机制中,提出了基于NN的分组马尔可夫叠加传输的滑窗译码算法,并分析了其对应的性能下界。所提出的译码算法提供了一种将NN运用到长码译码的解决思路,即用NN替代译码中的部分模块。仿真结果表明,利用NN实现的基本码译码器可以达到最大似然译码性能。基于NN的分组马尔可夫叠加传输的滑窗译码算法性能在中高信噪比区域与对应精灵辅助下界贴合,获得了额外的编码增益。
A neural network (NN)-based decoding algorithm of block Markov superposition transmission (BMST) was researched.The decoders of the basic code with different network structures and representations of training data were implemented using NN.Integrating the NN-based decoder of the basic code in an iterative manner
a sliding window decoding algorithm was presented.To analyze the bit error rate (BER) performance
the genie-aided (GA) lower bounds were presented.The NN-based decoding algorithm of the BMST provides a possible way to apply NN to decode long codes.That means the part of the conventional decoder could be replaced by the NN.Numerical results show that the NN-based decoder of basic code can achieve the BER performance of the maximum likelihood (ML) decoder.For the BMST codes
BER performance of the NN-based decoding algorithm matches well with the GA lower bound and exhibits an extra coding gain.
O’SHEA T , HOYDIS J . An introduction to deep learning for the physical layer [J ] . IEEE Transactions on Cognitive Communications and Networking , 2017 , 3 ( 4 ): 563 - 575 .
CAID W R , MEANS R W . Neural network error correcting decoders for block and convolutional codes [C ] // 1990 IEEE Global Communications Conference . Piscataway:IEEE Press , 1990 : 1028 - 1031 .
WANG X A , WICKER S B . An artificial neural net Viterbi decoder [J ] . IEEE Transactions on Communications , 1996 , 44 ( 2 ): 165 - 171 .
GRUBER T , CAMMERER S , HOYDIS J , et al . On deep learning-based channel decoding [C ] // 2017 IEEE Annual Conference on Information Sciences and Systems . Piscataway:IEEE Press , 2017 : 1 - 6 .
NACHMANI E , MARCIANO E , LUGOSCH L , et al . Deep learning methods for improved decoding of linear codes [J ] . IEEE Journal of Selected Topics in Signal Processing , 2018 , 12 ( 1 ): 119 - 131 .
BELLMAN R . Dynamic programming [J ] . Science , 1966 , 153 ( 3731 ): 34 - 37 .
WANG Y , ZHANG Z , ZHANG S , et al . A unified deep learning based polar-LDPC decoder for 5G communication systems [C ] // 2018 10th International Conference on Wireless Communications and Signal Processing . Piscataway:IEEE Press , 2018 : 1 - 6 .
CAMMERER S , GRUBER T , HOYDIS J , et al . Scaling deep learning-based decoding of polar codes via partitioning [C ] // 2017 IEEE Global Communications Conference . Piscataway:IEEE Press , 2017 : 1 - 6 .
LIANG C , MA X , ZHUANG Q , et al . Spatial coupling of generator matrices:a general approach to design good codes at a target BER [J ] . IEEE Transactions on Communications , 2014 , 62 ( 12 ): 4211 - 4219 .
MA X , LIANG C , HUANG K , et al . Block Markov superposition transmission:construction of big convolutional codes from short codes [J ] . IEEE Transactions on Information Theory , 2015 , 61 ( 6 ): 3150 - 3163 .
CAI S , LIN N , MA X . Block Markov superposition transmission of BCH codes with iterative erasures-and-errors decoders [J ] . IEEE Transactions on Communications , 2019 , 67 ( 1 ): 17 - 27 .
WANG Q , CAI S , LIN W , et al . Spatially coupled LDPC codes via partial superposition [C ] // 2019 IEEE International Symposium on Information Theory . Piscataway:IEEE Press , 2019 : 2614 - 2618 .
朱锦顺 , 马啸 . 户外无线光通信中湍流信道下的分组马尔可夫叠加传输研究 [J ] . 通信学报 , 2017 , 38 ( 7 ): 131 - 140 .
ZHU J S , MA X . Block Markov superposition transmission over turbulence channels in outdoor optical wireless communications [J ] . Journal on Communications , 2017 , 38 ( 7 ): 131 - 140 .
马啸 , 吉眉颖 , 陈声晓 . 分组马尔可夫叠加传输在非高斯脉冲信道上的性能研究 [J ] . 通信学报 , 2019 , 40 ( 3 ): 109 - 115 .
MA X , JI M Y , CHEN S X . Performance of block Markov superposition transmission over non-Gaussian impulsive channels [J ] . Journal on Communications , 2019 , 40 ( 3 ): 109 - 115 .
BI S , WANG Q , CHEN Z , et al . Deep learning-based decoding of block Markov superposition transmission [C ] // 2019 11th International Conference on Wireless Communications and Signal Processing . Piscataway:IEEE Press , 2019 : 1 - 5 .
MCCULLOCH W S , PITTS W . A logical calculus of the ideas immanent in nervous activity [J ] . The bulletin of Mathematical Biophysics , 1943 , 5 ( 4 ): 115 - 133 .
FORNEY G D . Codes on graphs:normal realizations [J ] . IEEE Transactions on Information Theory , 2001 , 47 ( 2 ): 520 - 548 .
NAIR V , HINTON G E . Rectified linear units improve restricted Boltzmann machines [C ] // 2010 International Conference on Machine Learning . Piscataway:IEEE Press , 2010 : 807 - 814 .
0
浏览量
534
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构