浏览全部资源
扫码关注微信
1. 上海交通大学电子信息与电气工程学院,上海 200240
2. 上海交通大学宁波人工智能研究院,浙江 宁波 315000
[ "伏玉笋(1972- ),男,甘肃天水人,博士,上海交通大学助理研究员,主要研究方向为无线通信与系统、无线网联智能系统、工业互联网与安全、智能制造等" ]
[ "杨根科(1963- ),男,山西原平人,博士,上海交通大学教授,主要研究方向为离散事件系统和混杂系统的建模、优化与控制" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-25
移动端阅览
伏玉笋, 杨根科. 无线超可靠低时延通信:关键设计分析与挑战[J]. 通信学报, 2020,41(8):187-203.
Yusun FU, Genke YANG. Wireless ultra-reliable and low-latency communication:key design analysis and challenge[J]. Journal on communications, 2020, 41(8): 187-203.
伏玉笋, 杨根科. 无线超可靠低时延通信:关键设计分析与挑战[J]. 通信学报, 2020,41(8):187-203. DOI: 10.11959/j.issn.1000-436x.2020154.
Yusun FU, Genke YANG. Wireless ultra-reliable and low-latency communication:key design analysis and challenge[J]. Journal on communications, 2020, 41(8): 187-203. DOI: 10.11959/j.issn.1000-436x.2020154.
目前超可靠低时延通信(URLLC)研究较碎片化,且侧重于某一点,因此以全景式视角,从应用场景和需求开始,介绍了URLLC相关的系统架构、关键技术和总体解决方案;然后分别对物理层检测性能需求、链路自适应、无线资源管理、端到端分集解决方案以及如何与时间敏感网络集成进行了深入的分析,并对候选方案进行了探讨。希望从广度到深度,对URLLC的理论研究以及如何应用有一个透彻全面的介绍,对其挑战有一个清晰的认识,从而为相关研究和工程技术人员提供借鉴。
The current fragmented ultra reliable and low latency communication (URLLC) research focusing on a certain point was overcome.From the perspective of panoramic view
starting from the application scenarios and requirements
the system architecture
key technologies and solutions of URLLC were analyzed and introduced.Then
the physical layer detection performance requirements
link adaptation
radio resource management
end-to-end diversity solutions and how to integrate with TSN (time sensitive network) were analyzed in depth
and possible candidates were discussed.It hopes to have a thorough and comprehensive understanding of the theoretical research and application of URLLC
and a clear understanding of its challenges
so as to play a key reference for researchers and engineers in the related fields.
SCHULZ P , MATTHE M , KLESSIG H , et al . Latency critical IoT applications in 5G:perspective on the design of radio interface and network architecture [J ] . IEEE Communications Magazine , 2017 , 55 ( 2 ): 70 - 78 .
POPOVSKI P , STEFANOVIC C , NIELSEN J J , et al . Wireless access in ultra-reliable low-latency communication (URLLC) [J ] . IEEE Transactions on Communications , 2019 , 67 ( 8 ): 5783 - 5801 .
PEISA J . 5G techniques for ultra reliable low latency communication [R ] .Ericsson Research.(2017-08)[2020-06-08 ] .
3GPP.Service requirements for the 5G system:TS 22.261 [S ] .(2018-03)[2020-06-08 ] .
3GPP.Study on communication for automation in vertical domains:TR22.804 [S ] .(2018-12)[2020-06-08 ] .
3GPP.Feasibility study on new services and markets technology enablers for critical communications:TR 22.862 [S ] .(2016-09)[2020-06-08 ] .
POLYANSKIY Y , POOR H V , VERDU S . Channel coding rate in the finite blocklength regime [J ] . IEEE Transactions on Information Theory , 2010 , 56 ( 5 ): 2307 - 2359 .
OHMANN D , SIMSEK M , FETTWEIS G P . Achieving high availability in wireless networks by an optimal number of Rayleigh-fading links [C ] // 2014 IEEE Globecom Workshops . Piscataway:IEEE Press , 2014 : 1402 - 1407 .
3GPP.Feasibility study on LAN support in 5G:TR 22.821 [S ] .(2018-06)[2020-06-08 ] .
3GPP.System architecture for the 5G system:TS 23.501 [S ] .(2019-06)[2020-06-08 ] .
3GPP.NR and NG-RAN overall description:TS 38.300 [S ] .(2019-06)[2020-06-08 ] .
3GPP.Analysis of URLLC reliability for HARQ:R1-1701595 [S ] . 3GPP ,(2017-02)[2020-06-08 ] .
3GPP.Physical layer procedures for data:TS38.214 [S ] .(2019-06)[2020-06-08 ] .
3GPP.CQI reporting for URLLC:R1-1718748 [S ] .(2017-10)[2020-06-08 ] .
3GPP.Evaluation scenarios for URLLC:R1-1717452 [S ] .(2017-10)[2020-06-08 ] .
3GPP.Study on physical layer enhancements for NR ultra-reliable and low latency case (URLLC):TR38.824 [S ] .(2019-03)[2020-06-08 ] .
3GPP.Study on NR industrial internet of things (IoT):TR38.825 [S ] .(2019-03)[2020-06-08 ] .
3GPP.Study on NR vehicle-to-everything (V2X):TR38.885 [S ] .(2019-03)[2020-06-08 ] .
3GPP.Study on enhancement of 5G system(5GS) for vertical and local area network (LAN) services:TR 23.734 [S ] .(2019-06)[2020-06-08 ] .
3GPP.Study on enhancement of ultra-reliable low-latency communication (URLLC) support in the 5G core network(5GC):TR 23.725 [S ] .(2019-06)[2020-06-08 ] .
DURISI G , KOCH T , POPOVSKI P . Towards massive,ultra-reliable,and low-latency wireless communication with short packets [J ] . Proceedings of the IEEE , 2016 , 104 ( 9 ): 1711 - 1726 .
AVRANAS A , KOUNTOURIS M , CIBLAT P . Throughput maximization and IR-HARQ optimization for URLLC traffic in 5G systems [C ] // 2019 IEEE International Conference on Communications . Piscataway:IEEE Press , 2019 : 1 - 6 .
HOBLER T , SIMSEK M , FETTWEIS G P . Mission reliability for URLLC in wireless networks [J ] . IEEE Communication Letters , 2018 , 22 ( 11 ): 2350 - 2353 .
SONY . 3GPP.On URLLC characteristics:R1-167062 [S ] .(2016-08)[2020-06-08 ] .
3GPP.On URLLC characteristics:R1-167062 [S ] .(2016-08)[2020-06-08 ] .
3GPP.On diversity and HARQ support for URLLC:R1-1702746 [S ] .(2017-02)[2020-06-08 ] .
3GPP.On link adaptation enhancements to support URLLC:R1-1712602 [S ] .(2017-08)[2020-06-08 ] .
BUCCHERI L , MANDELLI S , SAUR S , et al . Hybrid retransmission scheme for QoS-defined 5G ultra-reliable low-latency communications [C ] // 2018 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
3GPP.Link adaption for URLLC transmission:R1-1712210 [S ] .(2017-08)[2020-06-08 ] .
3GPP.CQI reporting for multiple services in NR:R1-1719584 [S ] .(2017-12)[2020-06-08 ] .
3GPP.Analysis of URLLC reliability for uplink control channel:R1-1710120 [S ] .(2017-06)[2020-06-08 ] .
3GPP.On high reliability:R1-1701872 [S ] .(2017-02)[2020-06-08 ] .
3GPP.UP latency in NR:R1-1718729 [S ] .(2017-10)[2020-06-08 ] .
3GPP.CP latency in NR:R1-1718728 [S ] .(2017-10)[2020-06-08 ] .
3GPP.Techniques for low latency:R1-1717455 [S ] .(2017-10)[2020-06-08 ] .
3GPP.Techniques for reliability:R1-1717453 [S ] .(2017-10)[2020-06-08 ] .
3GPP.Channel coding for URLLC:R1-1707007 [S ] .(2017-05)[2020-06-08 ] .
3GPP.Ultra-reliable part of URLLC for scheduling and HARQ procedure:R1-1712461 [S ] .(2017-08)[2020-06-08 ] .
STRODTHOFF N , GOKTEPE B , ISCHIER T , et al . Enhanced machine learning techniques for early HARQ feedback prediction in 5G [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 11 ): 2573 - 2587 .
KIM K S , KIM D K , CHAE C B , et al . Ultrareliable and low-latency communication techniques for tactile internet services [J ] . Proceedings of the IEEE , 2019 , 107 ( 2 ): 376 - 393 .
BELOGAEV A , KHOROV E , KRASILOV A , et al . Conservative link adaptation for ultra reliable low latency communications [C ] // 2019 IEEE International Black Sea Conference on Communications and Networking . Piscataway:IEEE Press , 2019 : 1 - 5 .
EGGERS P C F , ANGJELICHINOSKI M , POPOVSKI P . Wireless channel modeling perspectives for ultra-reliable communications [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 4 ): 2229 - 2243 .
FREDERIKSEN F , KOLDING T E . Performance and modelling of WCDMA/HSDPA transmission/H-ARQ schemes [C ] // Proceedings IEEE 56th Vehicular Technology Conference IEEE VTC . Piscataway:IEEE Press , 2002 : 472 - 476 .
ROSA C , OUTES J , DIMOU K , et al . Performance of fast node B scheduling and L1 HARQ schemes in WCDMA uplink packet access [C ] // 2004 IEEE 59th Vehicular Technology Conference . Piscataway:IEEE Press , 2004 : 1635 - 1639 .
ABU-ALI N , TAHA A M , SALAH M , et al . Uplink scheduling in LTE and LTE-advanced:tutorial,survey and evaluation framework [J ] . IEEE Communications Surveys & Tutorials , 2014 , 16 ( 3 ): 1239 - 1265 .
CAPOZZI F , PIRO G , GRIECO L A , et al . Downlink packet scheduling in LTE cellular networks:key design issues and a survey [J ] . IEEE Communications Surveys & Tutorials , 2013 , 15 ( 2 ): 678 - 700 .
KHOROV E , KRASILOV A , MALYSHEV A . Radio resource scheduling for low-latency communications in LTE and beyond [C ] // 2017 IEEE/ACM 25th International Symposium on Quality of Service . Piscataway:IEEE Press , 2017 : 1 - 6 .
李建东 , 刘磊 , 盛敏 , 等 . 面向 5G 无线网络的智能干扰管理技术 [J ] . 电信科学 , 2016 , 32 ( 6 ): 3 - 14 .
LI J D , LIU L , SHENG M , et al . Intelligent interference management in 5G wireless networks [J ] . Telecommunication Science , 2016 , 32 ( 6 ): 3 - 14 .
3GPP.Study on network-assisted interference cancellation and suppression (NAIC) for LTE:TR 36.866 [S ] .(2014-03)[2020-06-08 ]
MALIK H , ALAM M M , MOULLEC Y , et al . Interference-aware radio resource allocation for 5G ultra-reliable low-latency communication [C ] // 2018 IEEE Globecom Workshops . Piscataway:IEEE Press , 2018 : 1 - 6 .
SORET B , DOMENICO A D , BAZZI S , et al . Interference coordination for 5G new radio [J ] . IEEE Wireless Communications , 2018 , 25 ( 3 ): 131 - 137 .
BASSOY S , FAROOQ H , IMRAN M A , et al . Coordinated multi-point clustering schemes:a survey [J ] . IEEE Communications Surveys & Tutorials , 2017 , 19 ( 2 ): 743 - 764 .
3GPP.Interference management in NR:R1-1702719 [S ] .(2017-02)[2020-06 -08 ] .
3GPP.Discussion on interference coordination for NR:R1-166793 [S ] .(2016-08)[2020-06-08 ] .
3GPP.Discussion on interference management based on advanced transceivers for NR:R1-166791 [S ] .(2016-08)[2020-06-08 ] .
3GPP.Discussion on Multi-TRP cooperation for URLLC:R1-1712219 [S ] .(2017-08)[2020-06-08 ] .
BALACHANDRAN K , KANG J H , KARAKAYALI K , et al . NICE:a network interference cancellation engine for opportunistic uplink cooperation in wireless networks [J ] . IEEE Transactions on Wireless Communications , 2011 , 10 ( 2 ): 540 - 549 .
KARIMI A , PEDERSEN K , MAHMOOD N H , et al . 5G centralized multi-cell scheduling for URLLC:algorithms and system-level performance [J ] . IEEE Access , 2018 ( 6 ): 72253 - 72262 .
ALSENWI M , PANDEY S R , TUN Y K , et al . A chance constrained based formulation for dynamic multiplexing of eMBB-URLLC traffics in 5G new radio [C ] // 2019 International Conference on Information Networking . Piscataway:IEEE Press , 2019 : 108 - 113 .
ESSWIE A A , PEDERSEN K I . Opportunistic spatial preemptive scheduling for URLLC and eMBB coexistence in multi-user 5G networks [J ] . IEEE Access , 2018 ( 6 ): 38451 - 38463 .
ALSENWI M , HONG C S . Resource scheduling of URLLC eMBB traffics in 5G new radio:a punctured scheduling approach [EB ] . ResearchGate .(2018-06)[2020-06-08 ] .
ANAND A , VECIANA G , SHAKKOTTAI S . Joint scheduling of URLLC and eMBB traffic in 5G wireless networks [C ] // IEEE INFOCOM 2018 - IEEE Conference on Computer Communications . Piscataway:IEEE Press , 2018 : 1970 - 1978 .
POPOVSKI P , TRILLINGSGAARD K F , SIMEONE O , et al . 5G wireless network slicing for eMBB,URLLC,and mMTC:a communication-theoretic view [J ] . IEEE Access , 2018 ( 6 ): 55765 - 55779 .
3GPP R1-166395.URLLC system capacity and URLLC eMBB multiplexing efficiency analysis [S ] .(2016-08)[2020-06-08 ] .
BUTTAZZO G C , BERTOGNA M , YAO G . Limited preemptive scheduling for real-time systems:a survey [J ] . IEEE Transactions on Industrial Informatics , 2013 , 9 ( 1 ): 3 - 15 .
3GPP.CBG-based retransmission for eMBB:R1-1702990 [S ] .(2017-02)[2020-06-08 ] .
KHOSRAVIRAD S R , MUDOLO L , PEDERSEN K I . Flexible multi-bit feedback design for HARQ operation of large-size data packets in 5G [C ] // 2017 IEEE 85th Vehicular Technology Conference . Piscataway:IEEE Press , 2017 : 1 - 5 .
YEO J , PARK S , OH J , et al . Partial retransmission scheme for HARQ enhancement in 5G wireless communications [C ] // 2017 IEEE Globecom Workshops . Piscataway:IEEE Press , 2017 : 1 - 5 .
董园园 , 张钰婕 , 李华 , 等 . 面向 5G 的非正交多址接入技术 [J ] . 电信科学 , 2019 , 35 ( 7 ): 27 - 36 .
DONG Y Y , ZHANG Y J , LI H , et al . Key technologies of non-orthogonal multiple access for 5G systems [J ] . Telecommunications Science , 2019 , 35 ( 7 ): 27 - 36 .
王正强 , 成蕖 , 樊自甫 , 等 . 非正交多址系统资源分配研究综述 [J ] . 电信科学 , 2018 , 34 ( 8 ): 136 - 146 .
WANG Z Q , CHENG Q , FAN Z F , et al . A survey of resource allocation in non-orthogonal multiple access systems [J ] . Telecommunications Science , 2018 , 34 ( 8 ): 136 - 146 .
WANG Y , REN B , SUN S , et al . Analysis of non-orthogonal multiple access for 5G [J ] . China Communications , 2016 , 13 ( 2 ): 52 - 66 .
徐彦卿 . 面向超可靠无线通信的非正交多址技术研究 [D ] . 北京:北京交通大学 , 2019 .
XU Y Q . Non-orthogonal multiple access technology for ultra reliable wireless communications [D ] . Beijing:Beijing Jiao Tong University , 2019 .
DAI L , WANG B , DING Z , et al . A survey of non-orthogonal multiple access for 5G [J ] . IEEE Communications Surveys & Tutorials , 2018 , 20 ( 3 ): 2294 - 2323 .
DING Z , LEI X , KARAGIANNIDIS G K , et al . A survey on non-orthogonal multiple access for 5G networks:research challenges and future trends [J ] . IEEE Journal on Selected Areas in Communications , 2017 , 35 ( 10 ): 2181 - 2195 .
SHAHAB M B , ABBAS R , SHIRVANIMOGHADDAM M , et al . Grant-free non-orthogonal multiple access for IoT:a survey [J ] . IEEE Communications Surveys & Tutorials ( Early Access) ,(2020-05-20)[2020-06-08 ] .doi:10.1109/COMST.2020.2996032.
3GPP.Multiuser superposition performance upper bound:R1-151918 [S ] .(2015-04)[2020-06-08 ] .
HYTONEN V , LI Z , SORET B , et al . Coordinated multi-cell resource allocation for 5G ultra-reliable low latency communications [C ] // 2017 European Conference on Networks and Communications (EuCNC) . Piscataway:IEEE Press , 2017 : 1 - 5 .
NIELSEN J , LIU R , POPOVSKI P . Ultra-reliable low latency communication (URLLC) using interface diversity [J ] . IEEE Transactions on Communications , 2018 , 66 ( 3 ): 1322 - 1334 .
PEDERSEN K I , POCOVI G , STEINER J , et al . Punctured scheduling for critical low latency data on a shared channel with mobile broadband [C ] // 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) . Piscataway:IEEE Press , 2017 : 1 - 6 .
REN H , PAN C , DENG Y , et al . Joint power and blocklength optimization for URLLC in a factory automation scenario [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 3 ): 1786 - 1801 .
POCOVI G , PEDERSEN K I , MOGENSEN P . Joint link adaptation and scheduling for 5G ultra-reliable low-latency communications [J ] . IEEE Access , 2018 ( 6 ): 28912 - 28922 .
SAMARAKOON S , BENNIS M , SAAD W , et al . Distributed federated learning for ultra-reliable low-latency vehicular communications [J ] . IEEE Transactions on Communications , 2020 , 68 ( 2 ): 1146 - 1159 .
ESSWIE A A , PEDERSEN K I . Multi-user preemptive scheduling for critical low latency communications in 5G networks [C ] // 2018 IEEE Symposium on Computers and Communications . Piscataway:IEEE Press , 2018 : 136 - 141 .
ESSWIE A A , PEDERSEN K I , MOGENSEN P E . Preemption-aware rank offloading scheduling for latency critical communications in 5G networks [C ] // 2019 IEEE 89th Vehicular Technology Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
HOU Z , SHE C , LI Y , et al . Prediction and communication co-design for ultra-reliable and low-latency communications [J ] . IEEE Transactions on Wireless Communications , 2020 , 19 ( 2 ): 1196 - 1209 .
SHARIATMADARI H , IRAJI S , JANTTI R , et al . 5G control channel design for ultra-reliable low-latency communications [J ] . arXiv Preprint,arXiv:1803.04139 , 2018
MAHMOOD N H , KARIMI A , BERARDINELLI G , et al . On the resource utilization of multi-connectivity transmission for URLLC services in 5G new radio [C ] // 2019 IEEE Wireless Communications and Networking Conference Workshop . Piscataway:IEEE Press , 2019 : 1 - 6 .
SHE C , YANG C , QUEK T Q . Cross-layer optimization for ultra-reliable and low-latency radio access networks [J ] . IEEE Transactions on Wireless Communications , 2018 , 17 ( 1 ): 127 - 141 .
LI Z , UUSITALO M A , SHARIATMADARI H , et al . 5G URLLC:design challenges and system concepts [C ] // 2018 International Symposium on Wireless Communication Systems . Piscataway:IEEE Press , 2018 : 1 - 6 .
SUN C , SHE C , YANG C . Exploiting multi-user diversity for ultra-reliable and low-latency communications [C ] // 2017 IEEE Globecom Workshops . Piscataway:IEEE Press , 2017 : 1 - 6 .
ELGABLI A , KHAN H , KROUKA M , et al . Reinforcement learning based scheduling algorithm for optimizing age of information in ultra-reliable low latency networks [C ] // 2019 IEEE Symposium on Computers and Communications . Piscataway:IEEE Press , 2019 : 1 - 6 .
FEHRENBACH T , DATTAY R , GOKTEPE B , et al . URLLC services in 5G low latency enhancements for LTE [C ] // IEEE 88th Vehicular Technology Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
ANAND A , VECIANA G . Resource allocation and HARQ optimization for URLLC traffic in 5G wireless networks [J ] . IEEE Journal on Selected Areas in Communications , 2018 , 36 ( 11 ): 2411 - 2421 .
LI C P , JIANG J , CHEN W , et al . 5G ultra-reliable and low-latency systems design [C ] // 2017 European Conference on Networks and Communications . Piscataway:IEEE Press , 2017 : 1 - 5 .
YOU L , LIAO Q , PAPPAS N , et al . Resource optimization with flexible numerology and frame structure for heterogeneous services [J ] . IEEE Communications Letters , 2018 , 22 ( 12 ): 2579 - 2582 .
DESTOUNIS A , PASCHOS G S , ARNAU J , et al . Scheduling URLLC users with reliable latency guarantees [C ] // 2018 International Symposium on Modeling and Optimization in Mobile,Ad Hoc,and Wireless Networks . Piscataway:IEEE Press , 2018 : 1 - 8 .
VU T K , LIU C F , BENNIS M , et al . Ultra-reliable and low latency communication in mmWave-enabled massive MIMO networks [J ] . IEEE Communications Letters , 2017 , 21 ( 9 ): 2041 - 2044 .
SORET B , MOGENSEN P , PEDERSEN K I , et al . Fundamental tradeoffs among reliability,latency and throughput in cellular networks [C ] // 2014 IEEE Globecom Workshops . Piscataway:IEEE Press , 2014 : 1391 - 1396 .
BUCCHERI L , MANDELLI S , SAUR S , et al . Hybrid retransmission scheme for QoS-defined 5G ultra-reliable low-latency communications [C ] // 2018 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
DEGHEL M , ELAYOUBI S E , GALINDO-SERRANO A , et al . Joint optimization of link adaptation and HARQ retransmissions for URLLC services [C ] // 2018 International Conference on Telecommunications . Piscataway:IEEE Press , 2018 : 21 - 26 .
SHARIATMADARI H , LI Z , UUSITALO M A , et al . Link adaptation design for ultra-reliable communications [C ] // 2016 IEEE International Conference on Communications . Piscataway:IEEE Press , 2016 : 1 - 5 .
FAN J , YIN Q , LI G Y , et al . MCS selection for throughput improvement in downlink LTE systems [C ] // 2011 Proceedings of 20th International Conference on Computer Communications and Networks . Piscataway:IEEE Press , 2011 : 1 - 5 .
SUN C , SHE C , YANG C , et al . Optimizing resource allocation in the short blocklength regime for ultra-reliable and low-latency communications [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 1 ): 402 - 415 .
SHE C , YANG C , QUEK T Q . Radio resource management for Ultra-reliable and low-latency communications [J ] . IEEE Communications Magazine , 2017 , 55 ( 6 ): 72 - 78 .
GURSOY M C , . Throughput analysis of buffer-constrained wireless systems in the finite blocklength regime [C ] // 2011 IEEE International Conference on Communications . Piscataway:IEEE Press , 2011 : 1 - 5 .
BENNIS M , DEBBAH M , POOR H V . Ultra-reliable and low-latency wireless communication:tail,risk and scale [J ] . arXiv Preprint,arXiv:1801.01270v2 , 2018
EKSTROM H . QoS control in the 3GPP evolved packet system [J ] . IEEE Communications Magazine , 2009 , 47 ( 2 ): 76 - 83 .
廖媛媛 . 面向低延时高可靠通信的无线资源预分配技术 [D ] . 成都:电子科技大学 , 2019 .
LIAO Y Y . Wireless resource pre-allocation technology for low delay and high reliability communication [D ] . Chengdu:University of Electronic Science and Technology of China , 2019 .
3GPP.On URLLC design principles:R1-167061 [S ] .(2016-08)[2020-06-08 ] .
RAO J , VRZIC S . Packet duplication for URLLC in 5G dual connectivity architecture [C ] // 2018 IEEE Wireless Communications and Networking Conference . Piscataway:IEEE Press , 2018 : 1 - 6 .
3GPP.Multi-connectivity:TR 37.340 [S ] .(2019-06)[2020-06-08 ] .
3GPP.Evaluation on packet duplication in multi-connectivity:R2-1700172 [S ] .(2017-01-)[2020-06-08 ] .
3GPP.Data duplication in lower layers (HARQ):R2-1702032 [S ] .(2017-02)[2020-06-08 ] .
AIJAZ A . Packet duplication in dual connectivity enabled 5G wireless networks:overview and challenges [J ] . IEEE Communications Standards Magazine , 2019 , 3 ( 3 ): 20 - 28 .
RAO J , VRZIC S . Packet duplication for URLLC in 5G:architectural enhancements and performance analysis [J ] . IEEE Network , 2018 , 32 ( 2 ): 32 - 40 .
FERLIN S , KUCERAY S , GLAUSSENY H , et al . MPTCP meets FEC:supporting latency-sensitive applications over heterogeneous networks [J ] . IEEE/ACM Transactions on Networking , 2018 , 26 ( 5 ): 2005 - 2018 .
王毅 , 廖晓菊 , 潘泽友 . 多路径传输控制协议技术综述 [J ] . 信息与电子工程 , 2011 , 9 ( 1 ): 7 - 11 .
WANG Y , LIAO X J , PAN Z Y . An overview of multi-path transmission control protocol technology [J ] . Information and Electronic Engineering , 2011 , 9 ( 1 ): 7 - 11 .
黄韬 , 汪硕 , 黄玉栋 , 等 . 确定性网络研究综述 [J ] . 通信学报 , 2019 , 40 ( 6 ): 160 - 176 .
HUANG T , WANG S , HUANG Y D , et al . Survey of the deterministic network [J ] . Journal on Communications , 2019 , 40 ( 6 ): 160 - 176 .
KHOSHNEVISAN M , JOSEHP V , GUPTA P , et al . 5G industrial networks with CoMP for URLLC and time sensitive network architecture [J ] . IEEE Journal on Selected Areas in Communications , 2019 , 37 ( 4 ): 947 - 959 .
左旭彤 , 王莫为 , 崔勇 . 低时延网络:架构,关键场景与研究展望 [J ] . 通信学报 , 2019 , 40 ( 8 ): 22 - 35 .
ZUO X T , WANG M W , CUI Y . Low-latency networking:architecture,key scenarios and research prospect [J ] . Journal on Communications , 2019 , 40 ( 8 ): 22 - 35 .
0
浏览量
1451
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构