浏览全部资源
扫码关注微信
1. 南昌工程学院信息工程学院,江西 南昌 330099
2. 复旦大学信息科学与工程学院,上海 200433
[ "饶伟(1982- ),男,江西乐安人,博士,南昌工程学院副教授、硕士生导师,主要研究方向为阵列信号处理、自适应信号处理" ]
[ "桂宇风(1995- ),男,江西新余人,南昌工程学院硕士生,主要研究方向为阵列信号处理等" ]
[ "李旦(1982- ),男,江苏常州人,博士,复旦大学副教授、硕士生导师,主要研究方向为信号处理及其在超声检测、图像、控制、测量和雷达中的应用等" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-25
移动端阅览
饶伟, 桂宇风, 李旦. 基于张量的互质面阵信号处理方法[J]. 通信学报, 2020,41(8):99-109.
Wei RAO, Yufeng GUI, Dan LI. Tensor-based approach to the co-prime planar array signal processing[J]. Journal on communications, 2020, 41(8): 99-109.
饶伟, 桂宇风, 李旦. 基于张量的互质面阵信号处理方法[J]. 通信学报, 2020,41(8):99-109. DOI: 10.11959/j.issn.1000-436x.2020153.
Wei RAO, Yufeng GUI, Dan LI. Tensor-based approach to the co-prime planar array signal processing[J]. Journal on communications, 2020, 41(8): 99-109. DOI: 10.11959/j.issn.1000-436x.2020153.
针对由2个稀疏均匀矩形阵列(URA)构成的互质面阵(CPPA),提出了一种基于张量代数的阵列信号处理方法,以提高阵列自由度。首先,对CPPA中的2个URA进行拆分,将这2个URA的接收信号表示成2个张量;然后将其互相关结果处理成一个虚拟阵列的接收信号张量。分析表明,所提方法可将一个具有2
<
sup
>
2
<
/sup
>
L -1个物理阵元的 CPPA 转换成一个具有
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <msup> <mrow> <mo stretchy="false">(</mo><mi>L</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> <mrow> <mtext> </mtext><mn>4</mn></mrow> </msup> </mrow> <mrow> <mn>16</mn></mrow> </mfrac> </math>
个阵元的虚拟稀疏非均匀面阵。针对该虚拟面阵,给出了利用张量分解从其接收信号张量中估计入射信号二维波达角的方法,以避免二维谱峰搜索。与文献报道的互质面阵信号处理方法相比,所提方法将阵列自由度从L
<
sup
>
2
<
/sup
>
提升至
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <msup> <mrow> <mo stretchy="false">(</mo><mi>L</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> <mrow> <mtext> </mtext><mn>4</mn></mrow> </msup> </mrow> <mrow> <mn>16</mn></mrow> </mfrac> <mo>+</mo><mn>1</mn> </math>
,并具有更好的信号波达角估计性能及较低的计算复杂度,仿真结果证明了所提方法的有效性。
For the co-prime planar array (CPPA) consisting of two sparse uniform rectangular array (U
RA)
a new processing method based on tensor algebra was proposed to enhance the degrees of freedom (DoF).By dividing each URA into some overlapping subarrays
the received signals of two URAs were expressed as two tensors.And then the cross-correlation between such two tensors was processed into a received signal tensor of the virtual array.Analysis show that by the new method
the CPPA with 2
2
L -1 physical elements can be transformed into a virtual sparse non-uniform planar array with
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <msup> <mrow> <mo stretchy="false">(</mo><mi>L</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> <mrow> <mtext> </mtext><mn>4</mn></mrow> </msup> </mrow> <mrow> <mn>16</mn></mrow> </mfrac> </math>
elements.For the virtual array
the tensor decomposition-based approach for estimating the two-dimensional (2-D) direction of arrival (DoA) of the incident signal is also proposed
which means 2-D spectral peak searching is avoided.Compared with the co-prime planar signal processing methods reported in the literature
the proposed method can increase the DoF from L
2
to
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mfrac> <mrow> <msup> <mrow> <mo stretchy="false">(</mo><mi>L</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></mrow> <mrow> <mtext> </mtext><mn>4</mn></mrow> </msup> </mrow> <mrow> <mn>16</mn></mrow> </mfrac> <mo>+</mo><mn>1</mn> </math>
and has the better performance of the 2-D DoA estimation and lower computational complexity.Simulation results demonstrate the efficiency of the proposed method.
KRIM H , VIBERG M . Two decades of array signal processing research:the parametric approach [J ] . IEEE Signal Processing Magazine , 1996 , 13 ( 4 ): 67 - 94 .
SCHMIDT R . Multiple emitter location and signal parameter estimation [J ] . IEEE Transactions on Antennas and Propagation , 1986 , 34 ( 3 ): 276 - 280 .
ROY R , KAILATH T . ESPRIT-estimation of signal parameters via rotational invariance techniques [J ] . IEEE Transactions on Acoustics,Speech,and Signal Processing , 1989 , 37 ( 7 ): 984 - 995 .
MARCOS S , MARSAL A , BENIDER M . The propagator method for sources bearing estimation [J ] . Signal Processing , 1995 , 42 ( 2 ): 121 - 138 .
PAL P , VAIDYANATHAN P P . Nested arrays:a novel approach to array processing with enhanced degrees of freedom [J ] . IEEE Transactions on Signal Processing , 2010 , 58 ( 8 ): 4167 - 4181 .
VAIDYANATHAN P P , PAL P . Sparse sensing with co-prime samplers and arrays [J ] . IEEE Transactions on Signal Processing , 2011 , 59 ( 2 ): 573 - 586 .
PAL P , VAIDYANATHAN P P . Coprime sampling and the music algorithm [C ] // Digital Signal Processing Workshop & IEEE Signal Processing Education Workshop . Piscataway:IEEE Press , 2011 : 289 - 294 .
QIN S , ZHANG Y D , AMIN M G . Generalized coprime array configurations for direction-of-arrival estimation [J ] . IEEE Transactions on Signal Processing , 2015 , 63 ( 6 ): 1377 - 1390 .
WEI Z , WEI L , JU W , et al . Computationally efficient 2-D DoA estimation for uniform rectangular arrays [J ] . Multidimensional Systems &Signal Processing , 2014 , 25 ( 4 ): 847 - 857 .
CHEN Y , LEE J H , YEH C C . Two-dimensional angle-of-arrival estimation for uniform planar arrays with sensor position errors [J ] . Radar &Signal Processing IEE Proceedings F , 1993 , 140 ( 1 ): 37 - 42 .
CHEN H , HOU C , ZHU W P , et al . ESPRIT-like two-dimensional direction finding for mixed circular and strictly noncircular sources based on joint diagonalization [J ] . Signal Processing , 2017 , 141 : 48 - 56 .
ZHOU M , ZHANG X , QIU X , et al . Two-dimensional DoA estimation for uniform rectangular array using reduced-dimension propagator method [J ] . International Journal of Antennas & Propagation , 2014 , 2014 ( 1 ): 1 - 10 .
WU Q , SUN F , LAN P , et al . Two-dimensional direction-of-arrival estimation for co-prime planar arrays:a partial spectral search approach [J ] . IEEE Sensors Journal , 2016 , 16 ( 14 ): 5660 - 5670 .
WANG Z , XIAO F Z , ZHAN S . Two-dimensional direction of arrival estimation for coprime planar arrays via a computationally efficient one-dimensional partial spectral search approach [J ] . IET Radar,Sonar &Navigation , 2017 , 11 ( 10 ): 1581 - 1588 .
张彦奎 , 王大鸣 , 耿卫 , 等 . 基于双向传播算子的互质面阵二维波达方向估计 [J ] . 电子学报 , 2019 , 47 ( 3 ): 576 - 583 .
ZHANG Y K , WANG D M , GENG W , et al . Two-dimension DoA estimation coprime rectangular array using bi-directional propagator method [J ] . Acta Electronica Sinica , 2019 , 47 ( 3 ): 576 - 583 .
ZHENG W , ZHANG X , ZHAI H . Generalized coprime planar array geometry for two-dimensional DoA estimation [J ] . IEEE Communications Letters , 2017 , 21 ( 5 ): 1075 - 1078 .
KOLDA T G , BADER B W . Tensor decompositions and applications [J ] . SIAM Review , 2009 , 51 ( 3 ): 455 - 500 .
CICHOCKI A , MANDIC D , LATHAUWER L D , et al . Tensor decompositions for signal processing applications:from two-way to multiway component analysis [J ] . IEEE Signal Processing Magazine , 2015 , 32 ( 2 ): 145 - 163 .
KOLDA T G . Multilinear operators for higher-order decompositions [R ] .US Department of Energy,(2006-04-01)[2020-03-31 ] .
RAO W , LI D , ZHANG J Q . A tensor-based approach to l-shaped arrays processing with enhanced degrees of freedom [J ] . IEEE Signal Processing Letters , 2018 , 25 ( 2 ): 1 - 5 .
DONG Y Y , DONG C , XU J , et al . Computationally efficient 2-D DoA estimation for L-shaped array with automatic pairing [J ] . IEEE Antennas and Wireless Propagation Letters , 2016 , 15 : 1669 - 1672 .
HUARNG K C , TEH C C . Adaptive beamforming with conjugate symmetric weights [J ] . IEEE Transactions on Antennas and Propagation , 1991 , 39 ( 7 ): 926 - 932 .
HUARNG K C , YEH C C . A unitary transformation method for angle-of-arrival estimation [J ] . IEEE Transactions on Signal Processing , 1991 , 39 ( 4 ): 975 - 977 .
PAL P , VAIDYANATHAN P P . Nested arrays in two dimensions,part II:application in two dimensional array processing [J ] . IEEE Transactions on Signal Processing , 2012 , 60 ( 9 ): 4706 - 4817 .
NION D , SIDIROPOULOS N D . Tensor algebra and multidimensional harmonic retrieval in signal processing for MIMO radar [J ] . IEEE Transactions on Signal Processing , 2010 , 58 ( 11 ): 5693 - 5705 .
SHI J , HU G , ZHANG X , et al . Sparsity-based two-dimensional DoA estimation for coprime array:from sum–difference coarray viewpoint [J ] . IEEE Transactions on Signal Processing , 2017 , 65 ( 21 ): 5591 - 5604 .
0
浏览量
425
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构