浏览全部资源
扫码关注微信
1. 贵州大学计算机科学与技术学院,贵州 贵阳 550025
2. 贵州省公共大数据重点实验室,贵州 贵阳 550025
3. 贵州省智能人机交互工程技术研究中心,贵州 贵阳 550025
[ "黄瑞章(1979- ),女,天津人,博士,贵州大学副教授、硕士生导师,主要研究方向为数据挖掘、文本挖掘、机器学习和信息检索" ]
[ "白瑞娜(1994- ),女,山西兴县人,贵州大学硕士生,主要研究方向为文本挖掘、机器学习" ]
[ "陈艳平(1980- ),男,贵州长顺人,博士,贵州大学副教授、硕士生导师,主要研究方向为人工智能、自然语言处理" ]
[ "秦永彬(1980- ),男,山东招远人,博士,贵州大学教授、博士生导师,主要研究方向为智慧计算与智能计算、大数据管理与应用" ]
[ "程欣宇(1978- ),男,贵州绥阳人,贵州大学副教授,主要研究方向为机器学习和计算机视觉" ]
[ "田有亮(1982- ),男,贵州盘县人,博士,贵州大学教授,主要研究方向为算法博弈论、密码学与安全协议、大数据安全与隐私保护、电子货币与区块链技术" ]
网络出版日期:2020-08,
纸质出版日期:2020-08-25
移动端阅览
黄瑞章, 白瑞娜, 陈艳平, 等. CMDC:一种差异互补的迭代式多维度文本聚类算法[J]. 通信学报, 2020,41(8):155-164.
Ruizhang HUANG, Ruina BAI, Yanping CHEN, et al. CMDC:an iterative algorithm for complementary multi-view document clustering[J]. Journal on communications, 2020, 41(8): 155-164.
黄瑞章, 白瑞娜, 陈艳平, 等. CMDC:一种差异互补的迭代式多维度文本聚类算法[J]. 通信学报, 2020,41(8):155-164. DOI: 10.11959/j.issn.1000-436x.2020152.
Ruizhang HUANG, Ruina BAI, Yanping CHEN, et al. CMDC:an iterative algorithm for complementary multi-view document clustering[J]. Journal on communications, 2020, 41(8): 155-164. DOI: 10.11959/j.issn.1000-436x.2020152.
针对传统多维度文本聚类算法把文本表示与聚类过程分离,忽略了维度间的互补特性的问题,提出了一种差异互补的迭代式多维度文本聚类算法——CMDC,实现文本聚类与特征调整过程的统一优化。CMDC算法挑选维度聚类间结果的互补文本,基于局部度量学习算法利用互补文本促进聚类的特征调优,以维度的度量一致性来解决多维度文本聚类的划分一致性。实验结果表明,CMDC算法有效地提升了多维度聚类性能。
In response to the problems traditional multi-view document clustering methods separate the multi-view document representation from the clustering process and ignore the complementary characteristics of multi-view document clustering
an iterative algorithm for complementary multi-view document clustering——CMDC was proposed
in which the multi-view document clustering process and the multi-view feature adjustment were conducted in a mutually unified manner.In CMDC algorithm
complementary text documents were selected from the clustering results to aid adjusting the contribution of view features via learning a local measurement metric of each document view.The complementary text document of the results among the dimensionality clusters was selected by CMDC
and used to promote the feature tuning of the clusters.The partition consistency of the multi-dimensional document clustering was solved by the measure consistency of the dimensions.Experimental results show that CMDC effectively improves multi-dimensional clustering performance.
ALLAHYARI M , POURIYEH S , ASSEFI M , et al . Text summarization techniques:a brief survey [J ] . International Journal of Advanced Computer Science and Applications , 2017 , 8 ( 10 ): 397 - 405 .
QIAN M , ZHAI C . Unsupervised feature selection for multi-view clustering on text-image Web news data [C ] // Proceedings of the 23rd ACM International Conference on Information and Knowledge Management . New York:ACM Press , 2014 : 1963 - 1966 .
YANG Y , WANG H . Multi-view clustering:a survey [J ] . Big Data Mining and Analytics , 2018 , 1 ( 2 ): 83 - 107 .
BICKEL S , SCHEFFER T . Multi-view clustering [C ] // Industrial Conference on Data Mining . Piscataway:IEEE Press , 2004 : 19 - 26 .
CHAUDHURI K , KAKADE S M , LIVESCU K , et al . Multi-view clustering via canonical correlation analysis [C ] // Proceedings of the 26th Annual International Conference on Machine Learning . New York:ACM Press , 2009 : 129 - 136 .
KUMAR A,DAUMÉ H , . A co-training approach for multi-view spectral clustering [C ] // Proceedings of the 28th International Conference on Machine Learning . Washington:IMLS , 2011 : 393 - 400 .
KUMAR A , RAI P , DAUME H . Co-regularized multi-view spectral clustering [C ] // Advances in Neural Information Processing Systems.[S.n.:s] . 2011 : 1413 - 1421 .
YIN Q , WU S , HE R , et al . Multi-view clustering via pairwise sparse subspace representation [J ] . Neurocomputing , 2015 ( 156 ): 12 - 21 .
TIAN F , GAO B , CUI Q , et al . Learning deep representations for graph clustering [C ] // 28th AAAI Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2014 : 1293 - 1299 .
PENG X , XIAO S , FENG J , et al . Deep subspace clustering with sparsity prior [C ] // International Joint Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2016 : 1925 - 1931 .
CAI X , NIE F , HUANG H , et al . Heterogeneous image feature integration via multi-modal spectral clustering [C ] // Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2011 : 1977 - 1984 .
WANG Y , WU L . Beyond low-rank representations:orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering [J ] . Neural Networks , 2018 ( 103 ): 1 - 8 .
XIE Y , LIN B , QU Y , et al . Joint deep multi-view learning for image clustering [J ] . IEEE Transactions on Knowledge and Data Engineering , 2020 ( 99 ):1.
XIE J , GIRSHICK R , FARHADI A . Unsupervised deep embedding for clustering analysis [C ] // International Conference on Machine Learning . New York:IMLS , 2016 : 478 - 487 .
PERKINS H , YANG Y . Dialog Intent induction with deep multi-view clustering [J ] . arXiv Preprint,arXiv:1908.11487 , 2019
XING E P , JORDAN M I , RUSSELL S J , et al . Distance metric learning with application to clustering with side-information [C ] // Advances in Neural Information Processing Systems.[S.n.:s.l] . 2003 : 521 - 528 .
YE J , ZHAO Z , LIU H . Adaptive distance metric learning for clustering [C ] // 2007 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway:IEEE Press , 2007 : 1 - 7 .
BAGHSHAH M S , SHOURAKI S B . Kernel-based metric learning for semi-supervised clustering [J ] . Neurocomputing , 2010 , 73 ( 7-9 ): 1352 - 1361 .
MOUTAFIS P , LENG M , KAKADIARIS I A . An overview and empirical comparison of distance metric learning methods [J ] . IEEE Transactions on Cybernetics , 2016 , 47 ( 3 ): 612 - 625 .
HYUN Y , KIM N , CHO Y . A multi-dimensional issue clustering from the perspective consumers’ interests and R&D [J ] . Journal of the Korea Society of IT Services , 2015 , 14 ( 1 ): 237 - 249 .
黎万英 , 黄瑞章 , 丁志远 , 等 . 基于用户行为特征的多维度文本聚类 [J ] . 计算机应用 , 2018 , 38 ( 11 ): 3127 - 3131 .
LI W Y , HUANG R Z , DING Z Y , et al . Multi-dimensional text clustering with user behavior characteristics [J ] . Journal of Computer Applications , 2018 , 38 ( 11 ): 3127 - 3131 .
DEVLIN J , CHANG M W , LEE K , et al . BERT:pre-training of deep bidirectional transformers for language understanding [J ] . arXiv Preprint,arXiv:1810.04805 , 2018
BRBIĆ M , KOPRIVA I . Multi-view low-rank sparse subspace clustering [J ] . Pattern Recognition , 2018 ( 73 ): 247 - 258 .
WANG X , LEI Z , GUO X , et al . Multi-view subspace clustering with intactness-aware similarity [J ] . Pattern Recognition , 2018 ( 88 ): 50 - 63 .
RASIWASIA N , MAHAJAN D , MAHADEVAN V , et al . Cluster canonical correlation analysis [J ] . Aistats , 2014 : 823 - 831 .
0
浏览量
1046
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构