浏览全部资源
扫码关注微信
1. 重庆邮电大学通信与信息工程学院,重庆 400065
2. 重庆邮电大学-伦敦布鲁内尔大学交叉创新研究院,重庆 400065
[ "徐勇军(1986- ),男,湖北赤壁人,博士,重庆邮电大学副教授、硕士生导师,主要研究方向为反向散射通信、异构无线网络传输技术等" ]
[ "谷博文(1996- ),男,新疆昌吉人,重庆邮电大学硕士生,主要研究方向为反向散射通信、异构无线网络、边缘计算等" ]
[ "陈前斌(1967- ),男,四川南充人,博士,重庆邮电大学教授、博士生导师,主要研究方向为无线通信与网络" ]
[ "林金朝(1966- ),男,四川蓬溪人,博士,重庆邮电大学教授、博士生导师,主要研究方向为无线通信传输技术、BAN 与信息处理技术等" ]
网络出版日期:2020-10,
纸质出版日期:2020-10-25
移动端阅览
徐勇军, 谷博文, 陈前斌, 等. 基于能效最大的无线供电反向散射网络资源分配算法[J]. 通信学报, 2020,41(10):202-210.
Yongjun XU, Bowen GU, Qianbin CHEN, et al. Energy efficiency maximization resource allocation algorithm in wireless-powered backscatter communication network[J]. Journal on communications, 2020, 41(10): 202-210.
徐勇军, 谷博文, 陈前斌, 等. 基于能效最大的无线供电反向散射网络资源分配算法[J]. 通信学报, 2020,41(10):202-210. DOI: 10.11959/j.issn.1000-436x.2020132.
Yongjun XU, Bowen GU, Qianbin CHEN, et al. Energy efficiency maximization resource allocation algorithm in wireless-powered backscatter communication network[J]. Journal on communications, 2020, 41(10): 202-210. DOI: 10.11959/j.issn.1000-436x.2020132.
为缓解物联网节点数量增长带来的能耗问题,提出了基于能效最大化的多载波无线供电反向散射网络资源分配算法。首先,考虑发射功率门限和最小收集能量约束,构建了发射功率、传输时间、反射系数和收集能量分配系数联合优化的多变量非线性资源分配模型。然后,基于Dinkelbach方法和变量替换法,将原非凸资源分配问题转化为凸优化问题。同时,利用拉格朗日对偶理论获得解析解。仿真结果表明,与纯反向散射算法和纯能量收集算法相比,所提算法具有较好的能效。
In order to alleviate the energy consumption problem caused by the increasing number of Internet of things (IoT) nodes
an energy-efficient (EE) maximization based resource allocation algorithm was proposed for multi-carrier wireless-powered backscatter communication network.Firstly
a multivariable and nonlinear resource allocation model was formulated to jointly optimize transmit power
transmission time
reflection coefficient
and energy-harvesting allocation coefficient
where the maximum transmit power constraint of the power station and the minimum harvested energy constraint at the backscatter device were considered.Then
the original non-convex optimization problem was transformed into a convex one which was solved by using Dinkelbach’s method and the variable substitution approach.Furthermore
the analytical solution of the resource allocation problem was obtained based on Lagrange dual theory.Simulation results verify that the proposed algorithm has better EE by comparing it with the existing algorithm under pure backscatter mode and algorithm under the harvested-then-transmit mode.
LI D . Capacity of backscatter communication with frequency shift in Rician fading channels [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 6 ): 1639 - 1643 .
XU Y J , LI G Q , YANG Y , et al . Robust resource allocation and power splitting in SWIPT enabled heterogeneous networks:a robust minimax approach [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 6 ): 10799 - 10811 .
BOHLI A , BOUALLEGUE R . How to meet increased capacities by future green 5G networks:a survey [J ] . IEEE Access , 2019 ( 7 ): 42220 - 42237 .
NGUYEN V H , DINH T H , LU X , et al . Ambient backscatter communications:a contemporary survey [J ] . IEEE Communications Surveys& Tutorials , 2018 , 20 ( 4 ): 2889 - 2922 .
WU F H , YANG D C , XIAO L , et al . Energy consumption and completion time tradeoff in rotary-wing UAV enabled WPCN [J ] . IEEE Access , 2019 ( 7 ): 79617 - 79635 .
徐勇军 , 杨洋 , 刘期烈 , 等 . 认知网络干扰效率最大稳健功率与子载波分配算法 [J ] . 通信学报 , 2020 , 41 ( 1 ): 84 - 93 .
XU Y J , YANG Y , LIU Q L , et al . Robust power and subcarrier allocation algorithm for cognitive network based on interference efficiency maximization [J ] . Journal on Communications , 2020 , 41 ( 1 ): 84 - 93 .
LIU X L , GAO Y , HU F Y . Optimal time scheduling scheme for wireless powered ambient backscatter communications in IoT networks [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 2264 - 2272 .
MA Z , HE C , RAO Y Y , et al . Time-and power-splitting strategies for ambient backscatter system [J ] . IEEE Access , 2019 ( 7 ): 40068 - 40077 .
YANG G , YUAN D D , LIANG Y C , et al . Optimal resource allocation in full-duplex ambient backscatter communication networks for wireless-powered IoT [J ] . IEEE Internet of Things Journal , 2019 , 6 ( 2 ): 2612 - 2625 .
XIAO S , GUO H Y , LIANG Y C . Resource allocation for full-duplex-enabled cognitive backscatter networks [J ] . IEEE Transactions on Wireless Communications , 2019 , 18 ( 6 ): 3222 - 3235 .
YANG G , XU X Y , LIANG Y C . Resource allocation in NOMA-enhanced backscatter communication networks for wireless powered IoT [J ] . IEEE Wireless Communications Letters , 2019 , 9 ( 1 ): 117 - 120 .
LYU B , DINH T H , YANG Z . User cooperation in wireless-powered backscatter communication networks [J ] . IEEE Wireless Communications Letters , 2019 , 8 ( 2 ): 632 - 635 .
RAMEZANI P , JAMALIPOUR A . Optimal resource allocation in backscatter assisted WPCN with practical energy harvesting model [J ] . IEEE Transactions on Vehicular Technology , 2019 , 68 ( 12 ): 12406 - 12410 .
LYU B , GUO H Y , YANG Z , et al . Throughput maximization for hybrid backscatter assisted cognitive wireless powered radio networks [J ] . IEEE Internet of Things Journal , 2018 , 5 ( 3 ): 2015 - 2024 .
YE Y H , SHI L Q , HU R Q , et al . Energy-efficient resource allocation for wirelessly powered backscatter communications [J ] . IEEE Communications Letters , 2019 , 23 ( 8 ): 1418 - 1422 .
DINKELBACH W . On nonlinear fractional programming [J ] . Manage Science , 1967 , 13 ( 7 ): 492 - 498 .
TASKOU S K , RASTI M . Fast water-filling method for sum-power minimization in OFDMA networks [J ] . IEEE Signal Processing Letters , 2017 , 24 ( 7 ): 1058 - 1062 .
BOYD S , VANDENBERGHE L . Convex optimization [M ] . Cambridge : Cambridge University PressPress , 2004 .
0
浏览量
328
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构