浏览全部资源
扫码关注微信
1. 南昌大学信息工程学院,江西 南昌330031
2. 湖南大学信息科学与工程学院,湖南 长沙 410082
3. 名古屋大学工学院,爱知 名古屋 464-8601
4. 厦门理工学院计算机与信息工程学院,福建 厦门 361024
[ "吴武飞(1986- ),男,江西安义人,博士,南昌大学讲师,主要研究方向为嵌入式计算、CPS、车载网络安全技术" ]
[ "李仁发(1957- ),男,湖南郴州人,博士,湖南大学教授、博士生导师,主要研究方向为计算机体系结构、嵌入式计算、CPS、物联网" ]
[ "曾刚(1970- ),男,湖南常德人,博士,名古屋大学助理教授,主要研究方向为能耗计算、实时嵌入系统设计" ]
[ "谢勇(1985- ),男,湖南衡阳人,博士,厦门理工学院副教授,主要研究方向为嵌入式系统、CPS、车内网络的设计和优化" ]
[ "谢国琪(1983- ),男,湖南宁乡人,博士,湖南大学副教授,主要研究方向为嵌入式与信息物理系统、并行与分布式系统、安全关键系统" ]
网络出版日期:2020-06,
纸质出版日期:2020-06-25
移动端阅览
吴武飞, 李仁发, 曾刚, 等. 智能网联车网络安全研究综述[J]. 通信学报, 2020,41(6):161-174.
Wufei WU, Renfa LI, Gang ZENG, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on communications, 2020, 41(6): 161-174.
吴武飞, 李仁发, 曾刚, 等. 智能网联车网络安全研究综述[J]. 通信学报, 2020,41(6):161-174. DOI: 10.11959/j.issn.1000-436x.2020130.
Wufei WU, Renfa LI, Gang ZENG, et al. Survey of the intelligent and connected vehicle cybersecurity[J]. Journal on communications, 2020, 41(6): 161-174. DOI: 10.11959/j.issn.1000-436x.2020130.
针对汽车的网络攻击不仅会造成隐私泄露和经济损失,严重情况下还会危及生命安全,甚至上升为国家公共安全问题,因此智能网联车网络安全问题已成为当前研究的热点。首先,对智能网联车中车载网络的结构现状和特点进行了介绍,阐述了车载网络安全面临的设计约束和挑战。其次,结合车载网络当前面临的功能安全和信息安全问题,综述了近年来车载网络安全方面国内外最新研究进展。最后,从车载网络结构的特点出发,从标准建设、功能安全和信息安全3个方面,围绕智能网联车网络信息安全问题指出了一些重要的研究方向和建议。
Cyber attacks on vehicles not only cause privacy leaks and economic losses but also endanger human life and even rise to national public safety issues.Therefore
the research on the cybersecurity of intelligent and connected vehicle (ICV) has become a research hot spot.Firstly
the structural status and characteristics of the in-vehicle network (IVN) in ICV were introduced
and the challenges and constraints of cybersecurity enhancement design for IVN were also presented.Secondly
focusing on the current functional safety and cybersecurity issues of IVN
a survey of the current cybersecurity enhancement researches for IVN was conducted.Finally
according to the characteristics of the IVN structure
some important research directions and suggestions about cybersecurity problems of ICV were pointed out from the three aspects of standard construction
functional safety and cybersecurity.
郄广 , 张岩 . 智能车与网联技术分析 [J ] . 移动通信 , 2020 , 44 ( 1 ): 80 - 85 .
QIE G , ZHANG Y . Intelligent connected vehicle:a survey of the technical analysis [J ] . Mobile Communications , 2020 , 44 ( 1 ): 80 - 85 .
方凯正 , 朱成 , 刘頔 . 5G技术在汽车产业中的创新应用研究 [J ] . 科技与创新 , 2020 ( 6 ): 148 - 149 .
FANG K Z , ZHU C , LIU D . Research on the innovative application of 5G technology in automobile industry [J ] . Science and Technology &Innovation , 2020 ( 6 ): 148 - 149 .
李克强 , 戴一凡 , 李升波 , 等 . 智能网联汽车(ICV)技术的发展现状及趋势 [J ] . 汽车安全与节能学报 , 2017 , 8 ( 1 ): 1 - 14 .
LI K Q , DAI Y F , LI S B , et al . State-of-the-art and technical trends of intelligent and connected vehicles [J ] . Journal of Automotive Safety and Energy , 2017 , 8 ( 1 ): 1 - 14 .
中国汽车工程学会 . 智能网联汽车信息安全白皮书 [R ] .(2017-10-17)[2019-11-18 ] .
China Society of Automotive Engineering . White paper on intelligent network automobile information security [R ] .(2017-10-17)[201911-18 ] .
荀毅杰 , 刘家佳 , 赵静 . 智能网联汽车的安全威胁研究 [J ] . 物联网学报 , 2019 , 3 ( 4 ): 72 - 81 .
XUN Y J , LIU J J , ZHAO J . Research on security threat of intelligent connected vehicle [J ] . Chinese Journal on Internet of Things , 2019 , 3 ( 4 ): 72 - 81 .
李岩松 . 复杂网络环境下智能网联汽车安全威胁分析与远程入侵研究 [D ] . 西安:西安电子科技大学 , 2019 .
LI Y S . Analysis of safety threats and remote invasion of intelligent and connected vehicle in complex network environment [D ] . Xi’an:Xidian University , 2019 .
JADHAV S , KSHIRSAGAR D . A survey on security in automotive networks [C ] // International Conference on Computing Communication Control and Automation . Piscataway:IEEE Press , 2018 : 1324 - 1330 .
YANG D , JIANG K , ZHAO D , et al . Intelligent and connected vehicles:Current status and future perspectives [J ] . Science China-Technological Sciences , 2018 , 61 ( 10 ): 1446 - 1471 .
ALNABULSI H , ISLAM R . Protecting code injection attacks in intelligent transportation system [C ] // Trust Security and Privacy in Computing and Communications . Piscataway:IEEE Press , 2019 : 799 - 806 .
苗圩 . 苗圩:发展智能网联汽车的六大重点工作 [J ] . 汽车纵横 , 2017 ( 7 ): 21 - 23 .
MIAO W . Miao wei:the development of intelligent network car six key work [J ] . Automotive crossbar , 2017 ( 7 ): 21 - 23 .
DIBAEI M , ZHENG X , JIANG K , et al . An overview of attacks and defences on intelligent connected vehicles [J ] . arXiv Preprint,arXiv:1907.07455 , 2019
吴武飞 . 新一代汽车网络入侵检测及安全增强设计研究 [D ] . 长沙:湖南大学 , 2018 .
WU W F . Research on intrusion detection and cybersecurity enhancement design for new in-vehicle network environment [D ] . Changsha:Hunan University , 2018 .
SHAW R , JACKMAN B . An introduction to FlexRay as an industrial network [C ] // International Symposium on Industrial Electronics . Piscataway:IEEE Press , 2008 : 1849 - 1854 .
THIELE D , ERNST R . Formal worst-case timing analysis of ethernet TSN’s burst-limiting shaper [C ] // Conference on Design,Automation &Test in Europe . Piscataway:IEEE Press , 2016 : 187 - 192 .
ISO . Road vehicle-interchange of digital information-controller area network (CAN) for high-speed communication [S ] .ISO 11898,(2015-12-01)[2019-11-18 ] .
RUFF M , . Evolution of local interconnect network (LIN) solutions [C ] // Vehicular Technology Conference . Piscataway:IEEE Press , 2003 : 3382 - 3389 .
ALMEIDA L , PEDREIRAS P , FONSECA J A G . The FTT-CAN protocol:why and how [J ] . IEEE Transactions on Industrial Electronics , 2002 , 49 ( 6 ): 1189 - 1201 .
FIJAKOWSKI B T . Time triggered controller area networking [M ] . Netherlands : SpringerPress , 2011 : 69 - 72 .
WOO S , JO H J , KIM I S , et al . A practical security architecture for in-vehicle CAN-FD [J ] . IEEE Transactions on Intelligent Transportation Systems , 2016 , 17 ( 8 ): 2248 - 2261 .
ALDERISI G , IANNIZZOTTO G , PATTI G , et al . Prioritization-based bandwidth allocation for MOST networks [C ] // Emerging Technologies and Factory Automation . Piscataway:IEEE Press , 2013 : 1 - 4 .
POFERL S , BECHT M , DE P , et al . 150 Mbit/s MOST,the next generation automotive infotainment system [C ] // International Conference on Transparent Optical Networks . Piscataway:IEEE Press , 2010 : 1 - 2 .
CAO J , CUIJPERS P J L , BRIL R J , et al . Tight worst-case response-time analysis for ethernet AVB using eligible intervals [C ] // IEEE World Conference on Factory Communication Systems . Piscataway:IEEE Press , 2016 : 1 - 8 .
KERMIA O . Schedulability analysis and efficient scheduling of rate constrained messages in the TTEthernet protocol [J ] . Software Practice& Experience , 2017 : 1485 - 1499 .
魏学哲 , 孙泽昌 , 陈觉晓 . 汽车网络分类方法及其主流协议发展趋势 [J ] . 同济大学学报(自然科学版) , 2004 ( 6 ): 762 - 766 .
WE X Z , SUN Z C , CHEN J X . Automobile network classification method and its mainstream protocol development trend [J ] . Journal of Tongji University (Natural Science Edition) , 2004 ( 6 ): 762 - 766 .
罗峰 , 苏剑 , 袁大宏 . 汽车网络与总线标准 [J ] . 汽车工程 , 2003 ( 4 ): 372 - 376 .
LUO F , SU J , YUAN D H . Automotive network and bus standard [J ] . Automotive Engineering , 2003 ( 4 ): 372 - 376 .
刘冬冬 , 张天宏 , 陈建 , 等 . TTP/C协议的关键特性研究 [J ] . 计算机测量与控制 , 2012 , 20 ( 10 ): 2769 - 2772 .
LIU D D , ZHANG T H , CHEN J , et al . TTP/C protocol key features study [J ] . Computer Measurement & Control , 2012 , 20 ( 10 ): 2769 - 2772 .
车联网网络安全委员会 . 车联网网络安全白皮书 [R ] .(2017-09-02)[2019-11-18 ] .
Internet of Vehicles Network Security Committee . White paper on Internet of vehicles network security [R ] .(2017-09-02)[2019-11-18 ] .
CHECKOWAY S , MCCOY D , KANTOR B , et al . Comprehensive experimental analyses of automotive attack surfaces [C ] // Usenix Conference on Security . Berkeley:USENIX Association , 2011 :6.
KOSCHER K , CZESKIS A , ROESNER F , et al . Experimental security analysis of a modern automobile [C ] // 2010 IEEE Symposium on Security and Privacy . Piscataway:IEEE Press , 2010 : 447 - 462 .
WOO S , JO H J , DONG H L . A practical wireless attack on the connected car and security protocol for in-vehicle CAN [J ] . IEEE Transactions on Intelligent Transportation Systems , 2015 , 16 ( 2 ): 993 - 1006 .
KEENLAB . A review of safety studies on multiple BMW models [R ] .(2018-05-22)[2019-11-18 ] .
FOSTER I , PRUDHOMME A , KOSCHER K , et al . Fast and vulnerable:a story of telematic failures [C ] // Usenix Conference on Offensive Technologies . Berkeley:USENIX Association , 2015 : 1 - 9 .
ROUF I , MILLER R , MUSTAFA H , et al . Security and privacy vulnerabilities of in-car wireless networks:a tire pressure monitoring system case study [C ] // 19th Usenix Security Symposium . Berkeley:USENIX Association , 2010 : 11 - 13 .
KHAN Z , CHOWDHURY M , ISLAM M , et al . In-vehicle false information attack detection and mitigation framework using machine learning and software defined networking [J ] . arXiv Preprint,arXiv:1906.10203 , 2019
TAYLOR A , LEBLANC S , JAPKOWICZ N , et al . Anomaly detection in automobile control network data with long short-term memory networks [C ] // IEEE International Conference on Data Science & Advanced Analytics . Piscataway:IEEE Press , 2016 : 130 - 139 .
KEENLAB . CAR hacking research:remote attack tesla motors [R ] .(2016-09-19)[2019-11-18 ] .
KEENLAB . The exploitation of Wi-Fi protocol stack vulnerability on Tesla model S [R ] .(2020-01-02)[2020-05-22 ] .
TAO Y , KONG L , WEI X , et al . Resisting relay attacks on vehicular passive keyless entry and start systems [C ] // International Conference on Fuzzy Systems & Knowledge Discovery . Piscataway:IEEE Press , 2012 : 2232 - 2236 .
CHO K T , KANG G S . Error handling of in-vehicle networks makes them vulnerable [C ] // ACM Sigsac Conference on Computer and Communications Security . New York:ACM Press , 2016 : 1044 - 1055 .
SUN J , IQBAL S , ARABI N S , et al . A classification of attacks to in-vehicle components (IVCs) [J ] . Vehicular Communications , 2020 ( 25 ): 1 - 16 .
POP T , ELES P , PENG Z . Schedulability analysis for distributed heterogeneous time/event triggered real-time systems [C ] // Euromicro Conference on Real-Time Systems . Piscataway:IEEE Press , 2003 : 257 - 266 .
DAVIS R I , CUCU G L , BERTOGNA M , et al . A review of priority assignment in real-time systems [J ] . Journal of Systems Architecture , 2016 ( 65 ): 64 - 82 .
DAVIS R I , BURNS A , BRIL R J , et al . Controller area network (CAN) schedulability analysis:refuted,revisited and revised [J ] . Real-Time Systems , 2007 , 35 ( 3 ): 239 - 272 .
XIE G , ZENG G , LI Z , et al . Adaptive dynamic scheduling on multifunctional mixed-criticality automotive cyber-physical systems [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 8 ): 6676 - 6692 .
XIE G , CHEN Y , LIU Y , et al . Minimizing development cost with reliability goal for automotive functional safety during design phase [J ] . IEEE Transactions on Reliability , 2017 , PP ( 99 ):1.
XIE G , ZENG G , LIU Y , et al . Fast functional safety verification for distributed automotive applications during early design phase [J ] . IEEE Transactions on Industrial Electronics , 2017 , PP ( 99 ):1.
XIE Y , LIU L , LI R , et al . Security-aware signal packing algorithm for CAN-based automotive cyber-physical systems [J ] . IEEE/CAA Journal of Automatica Sinica , 2015 , 2 ( 4 ): 422 - 430 .
XIE Y , ZENG G , KURACHI R , et al . Security/timing-aware design space exploration of CAN FD for automotive cyber-physical systems [J ] . IEEE Transactions on Industrial Informatics , 2018 , 15 ( 2 ): 1094 - 1104 .
PIRYADARSHINI I . Introduction on cyber security [M ] . New York : John Wiley & SonsPress , 2019 .
WI W , LI R , XIE G , et al . A survey of intrusion detection for in-vehicle networks [J ] . IEEE Transactions on Intelligent Transportation Systems , 2020 , 21 ( 3 ): 919 - 933 .
LEE H , GEUM Y . Development of the scenario-based technology roadmap considering layer heterogeneity:an approach using CIA and AHP [J ] . Technological Forecasting and Social Change , 2017 : 12 - 24 .
PENG C , ZENG H . Response time analysis of digraph real-time tasks scheduled with static priority:generalization,approximation,and improvement [J ] . Real-Time Systems , 2017 ( 1 ): 1 - 41 .
CHEN G , GUAN N , LIU D , et al . Utilization-based scheduling of flexible mixed-criticality real-time tasks [J ] . IEEE Transactions on Computers , 2018 PP ( 99 ):1.
XIE G , ZENG G , KURACHI R , et al . WCRT analysis of CAN messages in gateway-integrated in-vehicle networks [J ] . IEEE Transactions on Vehicular Technology , 2017 , 66 ( 11 ): 9623 - 9637 .
DAVIS R I , ALTMEYER S , REINEKE J , et al . Response-time analysis for fixed-priority systems with a write-back cache [J ] . Real-Time Systems , 2018 , 54 ( 4 ): 912 - 963 .
CHANG W , SAMARJIT C . Resource-aware automotive control systems design:a cyber-physical systems approach [J ] . Foundations &Trends® in Electronic Design Automation , 2016 , 10 ( 4 ): 249 - 369 .
VATANPAVAR K , FARUAUE M A . ACQUA:adaptive and cooperative quality-aware control for automotive cyber-physical systems [C ] // 2017 IEEE/ACM International Conference on Computer Aided Design . Piscataway:IEEE Press , 2017 : 193 - 200 .
LUO F , HOU S . Cyberattacks and countermeasures for intelligent and connected vehicles [J ] . SAE International Journal of Passenger Cars-Electronic and Electrical Systems , 2019 , 12 ( 1 ): 55 - 66 .
GURGENS S , ZELLE D . A hardware based solution for freshness of secure onboard communication in vehicles [C ] // Computer Security . Berlin:Springer , 2018 : 53 - 68 .
SARPM . Secure message authentication protocol for CAN [D ] . Ankar:Middle East Technical University , 2020 .
WANG E , XU W , SASTRY S , et al . Hardware module-based message authentication in intra-vehicle networks [C ] // 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems . Piscataway:IEEE Press , 2017 : 207 - 216 .
SIDDIQUI A S , PLUSQUELLIC Y G , SAQIB F , et al . Secure communication over CANbus [C ] // International Midwest Symposium on Circuits and Systems . Piscataway:IEEE Press , 2017 : 1264 - 1267 .
GU Z , HAN G , ZENG H , et al . Security-aware mapping and scheduling with hardware co-processors for FlexRay-based distributed embedded systems [J ] . IEEE Transactions on Parallel & Distributed Systems , 2016 , 27 ( 10 ): 3044 - 3057 .
HERREWEGE A V , SINGELEE D , VERBAUWHEDE I . CANAuth-a simple,backward compatible broadcast authentication protocol for CAN bus [C ] // ECRYPT Workshop on Lightweight Cryptography.[S.n.:s.l] . 2011 : 299 - 235 .
JO H J , KIM J H , CHOI H Y , et al . MAuth-CAN:masquerade-attack-proof authentication for in-vehicle networks [J ] . IEEE Transactions on Vehicular Technology , 2020 , 69 ( 2 ): 2204 - 2218 .
KANG K D . A practical and lightweight source authentication protocol using one-way hash chain in can [D ] . Daegu:Daegu Gyeongbuk Institute of Science & Technology , 2017 .
CHO K , SHIN K G . Fingerprinting electronic control units for vehicle intrusion detection [C ] // Usenix Security Symposium . Berkely:USENIX Association , 2016 : 911 - 927 .
HALDER S , CONTI M , DAS S K , et al . COIDS:a clock offset based intrusion detection system for controller area networks [C ] // International Conference of Distributed Computing and Networking . New York:ACM Press , 2020 : 1 - 10 .
李飞 , 王超 . 基于关联规则挖掘的车载网络入侵检测技术研究 [J ] . 数据挖掘 , 2017 , 7 ( 3 ): 65 - 69 .
LI F , WANG C . Research on vehicle network intrusion detection technology based on association rule mining [J ] . Data Mining , 2017 , 7 ( 3 ): 65 - 69 .
LEE H , JEONG S , KIM H K , et al . OTIDS:a novel intrusion detection system for in-vehicle network by using remote frame [C ] // Conference on Privacy Security and Trust . Piscataway:IEEE Press , 2017 : 57 - 66 .
曾凡 . 网联汽车入侵检测系统的研究与实现 [D ] . 成都:电子科技大学 , 2018 .
ZENG F . Research and implementation of networked vehicle intrusion detection system [D ] . Chengdu:University of Electronic Science and Technology , 2018 .
李飞 , 廖租奇 , 张鹏飞 . 一种基于时钟偏移的车载网络入侵检测方法及系统:CN201811137466.0 [P ] .(2019-01-22)[2019-11-18 ] .
LI F , LIAO Z Q , ZHANG P F . A method and system of on-board network intrusion detection based on clock offset:CN201811137466.0 [P ] .(2019-01-22)[2019-11-18 ] .
关亚东 . 车内 CAN 总线入侵检测算法研究 [D ] . 黑龙江:哈尔滨工业大学 , 2019 .
GUAN Y D . Research on incar CAN bus intrusion detection algorithm [D ] . Heilongjiang:Harbin Institute of Technology , 2019 .
秦洪懋 , 闫梦如 , 冀浩杰 , 等 . 一种基于报文序列预测的车载网络入侵检测方法:CN201910499446.6 [P ] .(2019-08-20)[2019-11-18 ] .
QIN H M , YAN M R , JI H J , et al . A vehicle-mounted network intrusion detection method based on message sequence prediction:CN201910499446.6 [J ] .(2019-08-20)[2019-11-18 ] .
CHO K , SHIN K G . Viden:attacker identification on in-vehicle networks [C ] // Computer and Communications Security . New York:ACM Press , 2017 : 1109 - 1123 .
SONG H M , KIM H R , KIM H K . Intrusion detection system based on the analysis of time intervals of CAN messages for in-vehicle network [C ] // International Conference on Information Networking . Piscataway:IEEE Press , 2016 : 63 - 68 .
YANG Y , DUAN Z , TEHRANIPOOR M . Identify a spoofing attack on an in-vehicle CAN bus based on the deep features of an ECU fingerprint signal [J ] . Smart Cities , 2020 , 3 ( 1 ): 17 - 30 .
NING J , LIU J . An experimental study towards attacker identification in automotive networks [C ] // 2019 IEEE Global Communications Conference . Piscataway:IEEE Press , 2019 : 1 - 6 .
WANG E , XU W , SASTRY S , et al . Hardware module-based message authentication in intra-vehicle networks [C ] // 2017 ACM/IEEE 8th International Conference on Cyber-Physical Systems . Piscataway:IEEE Press , 2017 : 207 - 216 .
VAN W F , WANG Y , KHOJANDI A , et al . Real-time sensor anomaly detection and identification in automated vehicles [J ] . IEEE Transactions on Intelligent Transportation Systems , 2020 , 21 ( 3 ): 1264 - 1276 .
MARCHETTI M , STABILI D , GUIDO A , et al . Evaluation of anomaly detection for in-vehicle networks through information-theoretic algorithms [C ] // IEEE International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow . Piscataway:IEEE Press , 2016 : 1 - 6 .
MUTER M , ASAJ N . Entropy-based anomaly detection for in-vehicle networks [C ] // IEEE Intelligent Vehicles Symposium . Piscataway:IEEE Press , 2011 : 1110 - 1115 .
WU W F , HUANG Y , KURACHI R , et al . Sliding window optimized information entropy analysis method for intrusion detection on in-vehicle networks [J ] . IEEE Access , 2018 ( 6 ): 45233 - 45245 .
于赫 , 秦贵和 , 孙铭会 , 等 . 车载CAN总线网络安全问题及异常检测方法 [J ] . 吉林大学学报(工学版) , 2016 , 46 ( 4 ): 1246 - 1253 .
YU H , QIN G H , SUN M H , et al . Cyber security and anomaly detection method for in-vehicle CAN [J ] . Journal of Jilin University (Engineering Edition) , 2016 , 46 ( 4 ): 1246 - 1253 .
闫鑫 . 基于Renyi信息熵的CAN总线异常检测方法 [D ] . 吉林:吉林大学 , 2017 .
YAN X . CAN bus anomaly detection method based on Renyi information entropy [D ] . Jilin:Jilin University , 2017 .
吴玲云 , 秦贵和 , 于赫 . 基于随机森林的车载 CAN 总线异常检测方法 [J ] . 吉林大学学报(理学版) , 2018 , 56 ( 3 ): 663 - 668 .
WU L Y , QIN G H , YU H . Random forest based vehicle CAN bus anomaly detection method [J ] . Journal of Jilin University (Science Edition) , 2018 , 56 ( 3 ): 663 - 668 .
JEON B , JU H , JUNG B , et al . A study on traffic characteristics for anomaly detection of Ethernet-based IVN [C ] // International Conference on Information and Communication Technology Convergence . Piscataway:IEEE Press , 2019 : 951 - 953 .
MOUSAVINEJAD E , YANG F , HAN Q , et al . Distributed cyber attacks detection and recovery mechanism for vehicle platooning [J ] . IEEE Transactions on Intelligent Transportation Systems , 2019 , PP ( 99 ):1. 1 - 14 .
TAYLOR A , LEBLANC S , JAPKOWICZ N , et al . Anomaly detection in automobile control network data with long short-term memory networks [C ] // IEEE International Conference on Data Science and Advanced Analytics . Piscataway:IEEE Press , 2016 : 130 - 139 .
ANDREAS T . Anomaly detection in recordings from in-vehicle networks [J ] . Big Data and Applications , 2014 ( 3 ): 23 - 29 .
KANG M , KANG J . A novel intrusion detection method using deep neural network for in-vehicle network security [C ] // Vehicular Technology Conference . Piscataway:IEEE Press , 2016 : 1 - 5 .
CASILLO M , COPPOLA S , DE S M , et al . Embedded intrusion detection system for detecting attacks over CAN-BUS [C ] // 2019 4th International Conference on System Reliability and Safety . Piscataway:IEEE Press , 2019 : 136 - 141 .
DOSOVITSKIY A , ROS G , CODEVILLA F , et al . CARLA:an open urban driving simulator [J ] . arXiv Preprint,arXiv:1711.03938 , 2017
ISO . Road vehicles-functional safety:ISO 26262 [S ] .(2018-12-01)[2019-11-18 ] .
SAE . Cybersecurity guidebook for cyber-physical vehicle systems,standard:J3061_201601 [S ] .(2016-01-01)[2019-11-18 ] .
VU D H , AOKI T . Faithfully formalizing OSEK/VDX operating system specification [C ] // Symposium on Information & Communication Technology . New York:ACM Press , 2012 : 13 - 20 .
AUTOSAR . Specification of operating system,release 4.1.technical report [R ] .(2017-12-03)[2019-11-18 ] .
AUTOMOTIVE SIG . The SPICE user group,automotive SPICE process assessment model v2.5 and process reference model v4.5 [R ] .(2010-09-05)[2019-11-18 ] .
ISO . Road vehicles-safety of the intended functionality:PD ISO/PAS 21448 [S ] .(2019-02-15)[2019-11-18 ] .
全国信息安全标准化技术委员会 . 汽车电子网络安全标准化白皮书 [R ] .(2018-04-16)[2019-11-18 ] .
National Information Security Standardization Technical Committee . White paper on automotive electronic network security standardization [R ] .(2018-04-16)[2019-11-18 ] .
0
浏览量
3470
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构